
www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


ffi rs.indd 1½  4/2014 Page i

OCA: Oracle®

Certified Associate Java® 
SE 8 Programmer I 

Study Guide

Exam 1Z0-808

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


ffi rs.indd 1½  4/2014 Page iii

OCA: Oracle®

Certified Associate Java® 
SE 8 Programmer I 

Study Guide

Exam 1Z0-808

Jeanne Boyarsky

Scott Selikoff

www.allitebooks.com

http://www.allitebooks.org


ffi rs.indd 1½  4/2014 Page iv

Senior Acquisitions Editor: Kenyon Brown
Development Editor: Alexa Murphy
Technical Editors: Ernest Friedman-Hill, Matt Dalen
Production Editor: Rebecca Anderson
Copy Editor: Liz Welch
Editorial Manager: Pete Gaughan
Vice President and Executive Group Publisher: Richard Swadley
Associate Publisher: Jim Minatel
Production Manager: Kathleen Wisor
Media Supervising Producer: Rich Graves
Book Designers: Judy Fung and Bill Gibson
Proofreader: Scott Klemp, Word One New York
Indexer: Ted Laux
Project Coordinator, Cover: Patrick Redmond
Cover Designer: Wiley
Cover Image: ©Getty Images Inc./Jeremy Woodhouse
Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-95740-0   
ISBN: 978-1-118-95741-7 (ebk.)
ISBN: 978-1-118-95742-4 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or 
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written 
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the 
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John 
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online 
at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim 
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty 
may be created or extended by sales or promotional materials. The advice and strategies contained herein 
may not be suitable for every situation. This work is sold with the understanding that the publisher is not 
engaged in rendering legal, accounting, or other professional services. If professional assistance is required, 
the services of a competent professional person should be sought. Neither the publisher nor the author 
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this 
work as a citation and/or a potential source of further information does not mean that the author or the 
publisher endorses the information the organization or Web site may provide or recommendations it may 
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or 
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact 
our Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or 
fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material 
included with standard print versions of this book may not be included in e-books or in print-on-demand. 
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you 
may download this material at http://booksupport.wiley.com. For more information about Wiley 
products, visit www.wiley.com.

Library of Congress Control Number: 2014954685

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of 
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used 
without written permission. Oracle and Java are registered trademarks of Oracle America, Inc. All other 
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any 
product or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.allitebooks.org


ffi rs.indd 1½  4/2014 Page v

Dear Reader,

Thank you for choosing OCA: Oracle Certifi ed Associate Java SE 8 Programmer I Study 
Guide. This book is part of a family of premium-quality Sybex books, all of which are 
written by outstanding authors who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to producing 
consistently exceptional books. With each of our titles, we’re working hard to set a new 
standard for the industry. From the paper we print on, to the authors we work with, our 
goal is to bring you the best books available.

I hope you see all that refl ected in these pages. I’d be very interested to hear your com-
ments and get your feedback on how we’re doing. Feel free to let me know what you 
think about this or any other Sybex book by sending me an email at contactus@wiley
.com. If you think you’ve found a technical error in this book, please visit http://sybex
.custhelp.com. Customer feedback is critical to our efforts at Sybex. 

 Best regards,

 

 Chris Webb
 Associate Publisher
 Sybex, an Imprint of Wiley

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


ffi rs.indd 1½  4/2014 Page vii

To the programmers on FIRST robotics team 694.

—Jeanne

To my wife and the two little bundles of joy she is carrying.

—Scott

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


ffi rs.indd 1½  4/2014 Page ix

Acknowledgments

Jeanne and Scott would like to thank numerous individuals for their contribution to this 
book. Thank you to Developmental Editor Alexa Murphy for teaching us about Wiley’s 
publishing process and making the book better in so many ways. Thank you to Ernest 
Friedman-Hill for being our Technical Editor as we wrote our fi rst book. Ernest pointed 
out many subtle errors in addition to the big ones. And thank you to Matt Dalen for being 
our Technical Proofer and fi nding the errors we managed to sneak by Ernest. This book 
also wouldn’t be possible without many people at Wiley, including Jeff Kellum, Kenyon 
Brown, Pete Gaughan, Rebecca Anderson, and so many others.

Jeanne would personally like to thank Chris Kreussling for knowing almost a decade 
ago that she would someday write a book. Erik Kariyev motivated her to write her fi rst 
table of contents ever. Countless CodeRanch.com moderators warned Jeanne about how 
much work writing a book is to get her to the point where she was ready. Michael Ernest 
gave her extra advice on the Wiley process. Bert Bates let Jeanne dip her toe in by contrib-
uting to his Java 7 book and she learned a ton in the process. Scott was a great co-author 
and was available to bounce ideas off of or remind her to follow her own advice. Finally, 
Jeanne would like to thank all of the new programmers at CodeRanch.com and FIRST 
robotics team 694 for the constant reminders of how new programmers think.

Scott could not have reached this point without the help of a small army of people, led 
by his perpetually understanding wife Patti, without whose love and support this book 
would never have been possible. Professor Johannes Gehrke of Cornell University always 
believed in him and knew he would excel in his career. Jeanne’s patience and guidance 
as co-author was invaluable while Scott adjusted to the learning curve of writing a book. 
Matt Dalen has been a wonderful friend and sounding board over the last year. Joel 
McNary introduced him to CodeRanch.com and encouraged him to post regularly, a step 
that changed his life. Finally, Scott would like to thank his mother and retired teacher 
Barbara Selikoff for teaching him the value of education and his father Mark Selikoff, for 
instilling in him the benefi ts of working hard.





ffi rs.indd 1½  4/2014 Page xi

About the Authors

Jeanne Boyarsky  has worked as a Java developer for over 12 years at a bank in New York 
City where she develops, mentors, and conducts training. Besides being a senior moderator 
at CodeRanch.com in her free time, she works on the forum codebase. Jeanne also men-
tors the programming division of a FIRST robotics team, where she works with students 
just getting started with Java.

Jeanne got her Bachelor of Arts in 2002 and her Master’s in Computer Information 
Technology in 2005. She enjoyed getting her Master’s degree in an online program 
while working full time. This was before online education was cool! Jeanne is also a 
Distinguished Toastmaster and a Scrum Master. You can fi nd out more about Jeanne at 
www.coderanch.com/how-to/java/BioJeanneBoyarsky.

Scott Selikoff  is a professional software consultant, author, and owner of Selikoff 
Solutions, LLC, which provides software development solutions to businesses in the 
tri-state New York City area. Skilled in a plethora of software languages and platforms, 
Scott specializes in database-driven systems, web-based applications, and service-oriented 
architectures.

A native of Toms River, NJ, Scott achieved his Bachelor of Arts from Cornell University 
in Mathematics and Computer Science in 2002, after 3 years of study. In 2003, he received 
his Master’s of Engineering in Computer Science, also from Cornell University.

As someone with a deep love of education, Scott has always enjoyed teaching others new 
concepts. He’s given lectures at Cornell University and Rutgers University, as well as confer-
ences including The Server Side Java Symposium. Scott lives in New Jersey with his loving 
wife and two very playful dogs, a Siberian husky named Webby and standard poodle named 
Georgette. You can fi nd out more about Scott at www.linkedin.com/in/selikoff.

Jeanne and Scott are both moderators on the CodeRanch.com forums and can be reached 
there for questions and comments. They also co-author a technical blog called Down 
Home Country Coding at www.selikoff.net.





ffi rs.indd 1½  4/2014 Page xiii

Contents at a Glance
Introduction xxi

Assessment Test xxxi

Chapter 1 Java Building Blocks 1

Chapter 2 Operators and Statements 51

Chapter 3 Core Java APIs 101

Chapter 4 Methods and Encapsulation 165

Chapter 5 Class Design 233

Chapter 6 Exceptions 299

Appendix A Answers to Review Questions 333

Appendix B Study Tips 353

Index 367





ftoc.indd 1½  4/2014 Page xv

Contents
Introduction xxi

Assessment Test xxxi

Chapter 1 Java Building Blocks 1

Understanding the Java Class Structure 2
Fields and Methods 2
Comments 4
Classes vs. Files 5

Writing a main() Method  6
Understanding Package Declarations and Imports 9

Wildcards 10
Redundant Imports 11
Naming Conflicts 12
Creating a New Package 13
Code Formatting on the Exam 16

Creating Objects 16
Constructors 17
Reading and Writing Object Fields 18
Instance Initializer Blocks 18
Order of Initialization 19

Distinguishing Between Object References and Primitives 20
Primitive Types 20
Reference Types 24
Key Differences 25

Declaring and Initializing Variables 25
Declaring Multiple Variables 26
Identifiers 27

Understanding Default Initialization of Variables 29
Local Variables 29
Instance and Class Variables 30

Understanding Variable Scope 31
Ordering Elements in a Class 34
Destroying Objects 36

Garbage Collection 36
finalize() 38

Benefits of Java 39
Summary 40
Exam Essentials 41
Review Questions 42



xvi Contents

ftoc.indd 1½  4/2014 Page xvi

Chapter 2 Operators and Statements 51

Understanding Java Operators 52
Working with Binary Arithmetic Operators 53

Arithmetic Operators 53
Numeric Promotion 55

Working with Unary Operators 57
Logical Complement and Negation Operators 57
Increment and Decrement Operators 58

Using Additional Binary Operators 60
Assignment Operators 60
Compound Assignment Operators 62
Relational Operators 63
Logical Operators 64
Equality Operators 65

Understanding Java Statements 66
The if-then Statement 67
The if-then-else Statement 68
The switch Statement 72
The while Statement 76
The do-while Statement 78
The for Statement 80

Understanding Advanced Flow Control 86
Nested Loops 87
Adding Optional Labels 87
The break Statement 88
The continue Statement 90

Summary 92
Exam Essentials 92
Review Questions 94

Chapter 3 Core Java APIs 101

Creating and Manipulating Strings 102
Concatenation 102
Immutability 104
The String Pool 105
Important String Methods 105
Method Chaining 110

Using the StringBuilder Class 111
Mutability and Chaining 112
Creating a StringBuilder 113
Important StringBuilder Methods 114
StringBuilder vs. StringBuffer 117



Contents xvii

ftoc.indd 1½  4/2014 Page xvii

Understanding Equality 117
Understanding Java Arrays 119

Creating an Array of Primitives 119
Creating an Array with Reference Variables 121
Using an Array 123
Sorting 124
Searching 125
Varargs 126
Multidimensional Arrays 126

Understanding an ArrayList 129
Creating an ArrayList 129
Using an ArrayList 130
Wrapper Classes 134
Autoboxing 136
Converting Between array and List 136
Sorting 138

Working with Dates and Times 138
Creating Dates and Times 138
Manipulating Dates and Times 142
Working with Periods 145
Formatting Dates and Times 148
Parsing Dates and Times 151

Summary 151
Exam Essentials 152
Review Questions 153

Chapter 4 Methods and Encapsulation 165

Designing Methods 166
Optional Specifiers 168
Return Type 169
Method Name 170
Parameter List 171
Optional Exception List 171
Method Body 171

Working with Varargs 172
Applying Access Modifiers 173

Private Access 173
Default (Package Private) Access 175
Protected Access 176
Public Access 180
Designing Static Methods and Fields 181
Calling a Static Variable or Method 182
Static vs. Instance 183
Static Variables 185



xviii Contents

ftoc.indd 1½  4/2014 Page xviii

Static Initialization 186
Static Imports 187

Passing Data Among Methods 188
Overloading Methods 191
Creating Constructors 196

Default Constructor 197
Overloading Constructors 199
Final Fields 202
Order of Initialization 202

Encapsulating Data 205
Creating Immutable Classes 207

Writing Simple Lambdas 208
Lambda Example 209
Lambda Syntax 211
Predicates 214

Summary 215
Exam Essentials 216
Review Questions 218

Chapter 5 Class Design 233

Introducing Class Inheritance 234
Extending a Class 235
Applying Class Access Modifiers 237
Creating Java Objects 237
Defining Constructors 238
Calling Inherited Class Members 244
Inheriting Methods 246
Inheriting Variables 257

Creating Abstract Classes 259
Defining an Abstract Class 260
Creating a Concrete Class 262
Extending an Abstract Class 263

Implementing Interfaces 266
Defining an Interface 267
Inheriting an Interface 269
Interface Variables 273
Default Interface Methods 274
Static Interface Methods 278

Understanding Polymorphism 279
Object vs. Reference 281
Casting Objects 282
Virtual Methods 284
Polymorphic Parameters 285
Polymorphism and Method Overriding 287

www.allitebooks.com

http://www.allitebooks.org


Contents xix

ftoc.indd 1½  4/2014 Page xix

Summary 288
Exam Essentials 289
Review Questions 291

Chapter 6 Exceptions 299

Understanding Exceptions 300
The Role of Exceptions 300
Understanding Exception Types 302
Throwing an Exception 304

Using a try Statement 305
Adding a finally Block 307
Catching Various Types of Exceptions 309
Throwing a Second Exception 311

Recognizing Common Exception Types 313
Runtime Exceptions 314
Checked Exceptions 317
Errors 317

Calling Methods That Throw Exceptions 318
Subclasses 319
Printing an Exception 321

Summary 323
Exam Essentials 324
Review Questions 325

Appendix A Answers to Review Questions 333

Chapter 1: Java Building Blocks 334
Chapter 2: Operators and Statements 336
Chapter 3: Core Java APIs 339
Chapter 4: Methods and Encapsulation 342
Chapter 5: Class Design 346
Chapter 6: Exceptions 349

Appendix B Study Tips 353

Studying for the Test 354
Creating a Study Plan 354
Creating and Running Sample Applications 355

Taking the Test 359
Understanding the Question 359
Applying Process of Elimination 362
Optimizing Your Time 364
Getting a Good Night’s Rest 366

Index 367





fl ast.indd 1½  4/2014 Page xxi

Introduction

Java, “born” in 1995, is now just about 20 years old. As with anything 20 years old, there 
is a good amount of history and variation between versions of Java. Over the years, the cer-
tifi cation exams have changed to cover different topics. The names of the exams have even 
changed. This book covers the Java 8 Oracle Certifi ed Associate (OCA) exam. 

If you read about “the exam” on the Web, you may see information about the older 
names for the exam. We’ve showed the changes in name. Here’s what happened. Sun 
Microsystems used to have two exams. The SCJP (Sun Certifi ed Java Programmer) was 
meant for programmers and the SCJA (Sun Certifi ed Java Associate) was meant for those 
who wanted broader knowledge. When Oracle bought Sun Microsystems, they changed all 
the names from Sun to Oracle, giving us the OCJP and OCJA. 

SCJA
5-6

OCJA
6

OCA
7-8

OCP
7-8

OCJP
6

SCJP
1-6

Renamed

Renamed

Then Oracle made two strategic decisions with Java 7. They decided to stop updating the 
OCJA exam. They also decided to cover more on in the programmer space and split it into 
two exams. Now you fi rst take the OCAJP (Oracle Certifi ed Associate Java Programmer),  
also known as Java Programmer I, or OCA. That’s what this book is about. Then you 
take the OCPJP (Oracle Certifi ed Professional Java Programmer), also known as Java 
Programmer II, or OCP. There’s also an upgrade exam in case you took an older version of 
the SCJP or OCPJP and want to upgrade. Most people refer to the current exams as OCA 
8, OCP 8, and the Java 8 upgrade exam. We mention when a topic is split between the 
OCA and OCP so you know which parts are more advanced.

We try to keep the history to a minimum in this book. There are some places on the 
exam where you need to know both an “old way” and a “new way” of doing things. When 
that happens, we will be sure to tell you what version of Java introduced it. We will also let 
you know about topics that are not on the exam anymore in case you see questions in the 
older free online mock exams.



xxii Introduction

fl ast.indd 1½  4/2014 Page xxii

The OCA Exam

All you need to do to earn the Oracle Certifi ed Associate Java SE 8 Programmer certifi ca-
tion is to pass the exam! That’s it.

Oracle has a tendency to fi ddle with the length of the exam and the passing score once 
it comes out. Since it’s pretty much a guarantee that whatever we tell you here will become 
obsolete, we will give you a feel for the range of variation. The OCA exam has varied 
between 60 and 90 questions since it was introduced. The score to pass has varied between 
60 percent and 80 percent. The time allowed to take the exam has varied from two hours 
to two-and-a-half hours.

Oracle has a tendency to “tweak” the exam objectives over time as well. They do make 
minor additions and removals from what is covered on the exam. Although this tends to 
affect the OCP exam more than the OCA exam, there are a few topics that were added to 
the OCA for Java 8. It wouldn’t be a surprise for Oracle to make changes.

Although there will likely be minor changes to the scope of the exam, it certainly isn’t 
a secret. We’ve created a book page on our blog: www.selikoff.net/oca. If there are any 
changes to the topics on the exam after this book is published, we will note them there. 

That book page also contains a link to the offi cial exam page so that you can check the 
length and passing score that Oracle has chosen for the moment.

Scheduling the Exam

The exam is administered by Pearson VUE and can be taken at any Pearson VUE testing 
center. To fi nd a testing center or register for the exam, go to www.pearsonvue.com. Choose 
IT and then Oracle. If you haven’t been to the test center before, we recommend visiting in 
advance. Some testing centers are nice and professionally run. Others stick you in a closet 
with lots of people talking around you. You don’t want to be taking the test with someone 
complaining about their broken laptop nearby!

At this time, you can reschedule the exam without penalty until up to 24 hours before. 
This means that you can register for a convenient time slot well in advance, knowing that 
you can delay if you aren’t ready by that time. Rescheduling is easy and can be done on the 
Pearson VUE website. This may change, so check the rules before paying.

The Day of the Exam

When you go to take the exam, remember to bring two forms of ID, including one that is 
government issued. See Pearson’s list of what is acceptable ID at http://www.pearsonvue
.com/policies/1S.pdf. Try not to bring too much extra with you as it will not be allowed 



Introduction xxiii

fl ast.indd 1½  4/2014 Page xxiii

into the exam room. While you will be allowed to check your belongings, it is better to 
leave extra items at home or in the car.

You will not be allowed to bring paper, your phone, and so forth into the exam room 
with you. Some centers are stricter than others. At one center, tissues were even taken away 
from us! Most centers allow keeping your ID and money. They watch you taking the exam, 
though, so don’t even think about writing notes on money.

The exam center will give you writing materials to use during the exam. These are used 
as scratch paper during the exam to fi gure out answers and keep track of your thought pro-
cess. The exam center will dispose of them at the end. Notice how we said “writing materi-
als” rather than “pen and paper.” Some centers still give pen and paper. Most give a small 
erasable board and a dry erase marker. If you have a preference to which you receive, call 
the testing center in advance to inquire.

Finding Out Your Score

In the past, you would fi nd out right after fi nishing the exam if you passed. Now you have 
to wait nervously until you can check your score online.

If you go onto the Pearson VUE website, it will just have a status of “Taken” rather 
than your result. Oracle uses a separate system for scores. You’ll need to go to http://
certview.oracle.com to fi nd out whether you passed and your score. It doesn’t update 
immediately upon taking the test, but we haven’t heard of it taking more than an hour. In 
addition to your score, you’ll also see objectives for which you got a question wrong and 
instructions on how to get a hardcopy certifi cate.

 At some point, you’ll get an electronic certifi cate and some more time after that you’ll 
receive your printed certifi cate. Sound vague? It is. The times reported to receive certifi cates 
vary widely. 

Exam Questions

The OCA exam consists of multiple-choice questions. There are typically fi ve or six possi-
ble answers. If a question has more than one answer, the question specifi cally states exactly 
how many correct answers there are. This book does not do that. We say “choose all that 
apply” to make the questions harder. This means the questions in this book are generally 
harder than those on the exam. The idea is to give you more practice so you can spot the 
correct answer more easily on the real exam.

Note that exam questions will sometimes have line numbers that begin with numbers 
higher than 1. This is to indicate that you are looking at a code snippet rather than a com-
plete class. We follow this convention as well to get you used to it.

If you read about older versions of the exam online, you might see references to drag-
and-drop questions. These questions had you do a puzzle on how to complete a piece of 



xxiv Introduction

fl ast.indd 1½  4/2014 Page xxiv

code. There was also a bug in the exam software that caused your answers to get lost if you 
reviewed them again. Luckily, these are no longer on the exam.

Getting Started

We recommend reading Appendix B, “Study Tips,” before diving into the technical mate-
rial in this book. Knowing how to approach studying will help you make better use of your 
study time.

Next, make sure you have downloaded version 8 of the JDK. If you learned Java some 
time ago, you might have version 7 or even earlier. There have been both big and small 
changes to the language. You could get a question wrong if you study with the wrong 
version.

Also, please check our book page to make sure Oracle hasn’t changed the objectives. 
For example, if Oracle decided that lambdas weren’t on the exam, you’d want to know that 
before studying. We will post any updates that you should know about at www.selikoff
.net/oca.

Getting Help

Both of the authors are moderators at CodeRanch.com. CodeRanch.com is a very large 
and active programming forum that is very friendly toward Java beginners. It has a forum 
just for this exam called OCAJP. It also has a forum called Beginning Java for non-exam-
specifi c questions. As you read the book, feel free to ask your questions in either of those 
forums. It could be you are having trouble compiling a class or that you are just plain con-
fused about something. You’ll get an answer from a knowledgeable Java programmer. It 
might even be one of us.

Who Should Buy This Book

If you want to become certifi ed as a Java programmer, this book is defi nitely for you. If you 
want to acquire a solid foundation in Java and your goal is to prepare for the exam, this 
book is also for you. You’ll fi nd clear explanations of the concepts you need to grasp and 
plenty of help to achieve the high level of professional competency you need in order to suc-
ceed in your chosen fi eld.



Introduction xxv

fl ast.indd 1½  4/2014 Page xxv

This book is intended to be understandable to anyone who has a tiny bit of Java knowl-
edge. If you’ve never read a Java book before, we recommend starting with a book that 
teaches programming from the beginning and then returning to this study guide.

This book is for anyone from high school students to those beginning their program-
ming journey to experienced professionals who need a review for the certifi cation.

How This Book Is Organized

This book consists of six chapters, plus supplementary information: a glossary, this intro-
duction, three appendices, and the assessment test after the introduction. You might have 
noticed that there are more than six exam objectives. We split up what you need to know to 
make it easy to learn and remember. Each chapter begins with a list of the objectives that 
are covered in that chapter. 

The chapters are organized as follows:

 ■ Chapter 1, “Java Building Blocks,” covers the basics of Java such as scoping variables 
and how to run a program. It also includes calling methods and types of variables.

 ■ Chapter 2, “Operators and Statements,” focuses on the core logical constructs such as 
conditionals and loops. It also talks about the meaning and precedence of operators.

 ■ Chapter 3, “Core Java APIs,” introduces you to array, ArrayList, String, String-
Builder, and various date classes.

 ■ Chapter 4, “Methods and Encapsulation,” explains how to write methods, including 
access modifiers. It also shows how to call lambdas.

 ■ Chapter 5, “Class Design,” adds interfaces and superclasses. It also includes casting 
and polymorphism.

 ■ Chapter 6, “Exceptions,” shows the different types of exception classes and how to use 
them.

At the end of each chapter, you’ll fi nd a few elements you can use to prepare for the 
exam:

Summary  This section reviews the most important topics that were covered in the chapter 
and serves as a good review.

Exam Essentials  This section summarizes highlights that were covered in the chapter. You 
should be readily familiar with the key points of each chapter and be able to explain them 
in detail.

Review Questions  Each chapter concludes with at least 20 review questions. You should 
answer these questions and check your answers against the ones provided in Appendix A. 



xxvi Introduction

fl ast.indd 1½  4/2014 Page xxvi

If you can’t answer at least 80 percent of these questions correctly, go back and review the 
chapter, or at least those sections that seem to be giving you diffi culty.

The review questions, assessment test, and other testing elements 
included in this book are not derived from the real exam questions, so 
don’t memorize the answers to these questions and assume that doing so 
will enable you to pass the exam. You should learn the underlying topic, 
as described in the text of the book. This will let you answer the questions 
provided with this book and pass the exam. Learning the underlying topic 
is also the approach that will serve you best in the workplace—the ultimate 
goal of a certification.

To get the most out of this book, you should read each chapter from start to fi nish 
before going to the chapter-end elements. They are most useful for checking and reinforcing 
your understanding. Even if you’re already familiar with a topic, you should skim the chap-
ter. There are a number of subtleties to Java that you could easily not encounter even when 
working with Java, even for years.

Free Online Learning Environment

This book provides a free online interactive learning environment and test bank with sev-
eral additional elements. The online test bank includes:

Sample Tests  All of the questions in this book, including the 20-question assessment test 
at the end of this introduction and over 130 questions that make up the Review Question 
sections for each chapter. In addition, there are three 60-question Practice Exams to test 
your knowledge of the material. The online test bank runs on multiple devices.

Electronic Flashcards  Over 200 questions in fl ashcard format (a question followed by a 
single correct answer). You can use these to reinforce your learning and provide last-minute 
test prep before the exam. 

Glossary  The key terms from this book and their defi nitions are available as a fully 
searchable PDF.

Go to www.sybex.com/go/ocajavase8 to register and gain access to this 
comprehensive study tool package.



Introduction xxvii

fl ast.indd 1½  4/2014 Page xxvii

Conventions Used in This Book

This book uses certain typographic styles in order to help you quickly identify important 
information and to avoid confusion about the meaning of words, such as onscreen prompts. 
In particular, look for the following styles:

 ■ Italicized text indicates key terms that are described at length for the first time in a 
chapter. (Italics are also used for emphasis.)

 ■ A monospaced font indicates code or command-line text.

 ■ Italicized monospaced text indicates a variable.

In addition to these text conventions, which can apply to individual words or entire 
paragraphs, a few conventions highlight segments of text:

A note indicates information that’s useful or interesting. It is often some-
thing to pay special attention to for the exam.

Sidebars

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fi t 

into the main fl ow of the text.

Real World Scenario

A real world scenario describes a task or an example that’s particularly grounded in the 

real world. Although interesting, the scenario will not show up on the exam.

OCA Exam Objectives

OCA: Oracle Certifi ed Associate Java SE 8 Programmer I Study Guide: Exam 1Z0-808 
has been written to cover every OCA exam objective. The following table provides a break-
down of this book’s exam coverage, showing you the chapter where each objective or 
sub-objective is covered:



xxviii Introduction

fl ast.indd 1½  4/2014 Page xxviii

Exam Objective Chapter

■  Java Basics

Define the scope of variables 1

Define the structure of a Java class 1

Create executable Java applications with a main method; run a Java program 
from the command line, including console output

1

Import other Java packages to make them accessible in your code 1

Compare and contrast the features and components of Java such as platform 
independence, object orientation, encapsulation, etc.

1

■  Working with Java Data Types

Declare and initialize variables (including casting of primitive data types) 1

Differentiate between object reference variables and primitive variables 1

Know how to read or write to object fields 1

Explain an Object’s Lifecycle (creation, “dereference by reassignment,” and 
garbage collection)

1

Develop code that uses wrapper classes such as Boolean, Double, and Integer 1

■  Using Operators and Decision Constructs

Use Java operators, including parentheses to override operator precedence 2

Test equality between Strings and other objects using == and equals () 3

Create if and if/else and ternary constructs 2

Use a switch statement  2

■  Creating and Using Arrays

Declare, instantiate, initialize, and use a one-dimensional array 3

Declare, instantiate, initialize, and use multi-dimensional array 3

www.allitebooks.com

http://www.allitebooks.org


Introduction xxix

fl ast.indd 1½  4/2014 Page xxix

Exam Objective Chapter

■  Using Loop Constructs

Create and use while loops 2

Create and use for loops including the enhanced for loop 2

Create and use do/while loops 2

Compare loop constructs 2

Use break and continue 2

■  Working with Methods and Encapsulation

Create methods with arguments and return values, including overloaded 
methods 

4

Apply the static keyword  to methods and fields 4

Create and overload constructors, including impact on default constructors 4

Apply access modifiers 4

Apply encapsulation principles to a class 4

Determine the effect upon object references and primitive values when they 
are passed into methods that change the values

4

■  Working with Inheritance

Describe inheritance and its benefits 5

Develop code that demonstrates the use of polymorphism, including 
overriding and object type versus reference type

5

Determine when casting is necessary 5

Use super and this to access objects and constructors 5

Use abstract classes and interfaces 5

■  Handling Exceptions

Differentiate among checked exceptions, unchecked exceptions, and Errors 6

Create a try-catch block and determine how exceptions alter normal 
program flow

6



xxx Introduction

fl ast.indd 1½  4/2014 Page xxx

Exam Objective Chapter

Describe the advantages of Exception handling 6

Create and invoke a method that throws an exception 6

Recognize common exception classes (such as NullPointerException, Arith-
meticException, ArrayIndexOutOfBoundsException, ClassCastException)

6

■  Working with Selected Classes from the Java API

Manipulate data using the StringBuilder class and its methods 3

Creating and manipulating Strings 3

Create and manipulate calendar data using classes from java.time.LocalDate-
Time, java.time.LocalDate, java.time.LocalTime, java.time.format.DateTime-
Formatter, java.time.Period

3

Declare and use an ArrayList of a given type 3

Write a simple Lambda expression that consumes a Lambda Predicate 
expression

4

    (continued)



Introduction xxxi

fl ast.indd 1½  4/2014 Page xxxi

Assessment Test

1. What is the result of the following class? (Choose all that apply)
1: public class _C {

2:  private static int $;

3:  public static void main(String[] main) {

4:    String a_b;

5:    System.out.print($);

6:    System.out.print(a_b);

7:  } }

A. Compiler error on line 1.

B. Compiler error on line 2.

C. Compiler error on line 4.

D. Compiler error on line 5.

E. Compiler error on line 6.

F. 0null

G. nullnull

2. What is the result of the following code?
String s1 = "Java";

String s2 = "Java";

StringBuilder sb1 = new StringBuilder();

sb1.append("Ja").append("va");

System.out.println(s1 == s2);

System.out.println(s1.equals(s2));

System.out.println(sb1.toString() == s1);

System.out.println(sb1.toString().equals(s1));

A. true is printed out exactly once.

B. true is printed out exactly twice.

C. true is printed out exactly three times.

D. true is printed out exactly four times.

E. The code does not compile.

3. What is the output of the following code? (Choose all that apply)
1: interface HasTail { int getTailLength(); }

2: abstract class Puma implements HasTail {

3:   protected int getTailLength() {return 4;}

4: }

5: public class Cougar extends Puma {



xxxii Introduction

fl ast.indd 1½  4/2014 Page xxxii

6:    public static void main(String[] args) {

7:      Puma puma = new Puma();

8:      System.out.println(puma.getTailLength());

9:    }

10:

11:  public int getTailLength(int length) {return 2;}

12: }

A. 2

B. 4

C. The code will not compile because of line 3.

D. The code will not compile because of line 5.

E. The code will not compile because of line 7.

F. The code will not compile because of line 11.

G. The output cannot be determined from the code provided.

4. What is the output of the following program?
1: public class FeedingSchedule {

2:  public static void main(String[] args) {

3:    boolean keepGoing = true;

4:    int count = 0;

5:    int x = 3;

6:    while(count++ < 3) {

7:      int y = (1 + 2 * count) % 3;

8:      switch(y) {

9:         default:

10:         case 0: x -= 1; break;

11:         case 1: x += 5;

12:      }

13:    }

14:  System.out.println(x);

15: } }

A. 4

B. 5

C. 6

D. 7

E. 13

F. The code will not compile because of line 7.



Introduction xxxiii

fl ast.indd 1½  4/2014 Page xxxiii

5. What is the output of the following code snippet?
13: System.out.print("a");

14: try {

15:   System.out.print("b");

16:   throw new IllegalArgumentException();

17: } catch (RuntimeException e) {

18:   System.out.print("c");

19: } finally {

20:   System.out.print("d");

21: }

22: System.out.print("e");

A. abe

B. abce

C. abde

D. abcde

E. The code does not compile.

F. An uncaught exception is thrown.

6. What is the result of the following program?
1: public class MathFunctions {

2:   public static void addToInt(int x, int amountToAdd) {

3:     x = x + amountToAdd;

4:   }

5:   public static void main(String[] args) {

6:     int a = 15;

7:     int b = 10;

8:     MathFunctions.addToInt(a, b);

9:     System.out.println(a);   } }

A. 10

B. 15

C. 25

D. Compiler error on line 3.

E. Compiler error on line 8.

F. None of the above.

7. What is the result of the following code?
int[] array = {6,9,8};

List<Integer> list = new ArrayList<>();



xxxiv Introduction

fl ast.indd 1½  4/2014 Page xxxiv

list.add(array[0]);

list.add(array[2]);

list.set(1, array[1]);

list.remove(0);

System.out.println(list);

A. [8]

B. [9]

C. Something like [Ljava.lang.String;@160bc7c0

D. An exception is thrown.

E. The code does not compile.

8. What is the output of the following code?
1: public class Deer {

2:  public Deer() { System.out.print("Deer"); }

3:  public Deer(int age) { System.out.print("DeerAge"); }

4:  private boolean hasHorns() { return false; }

5:  public static void main(String[] args) {

6:    Deer deer = new Reindeer(5);

7:    System.out.println(","+deer.hasHorns());

8:  }

9: }

10: class Reindeer extends Deer {

11:  public Reindeer(int age) { System.out.print("Reindeer"); }

12:  public boolean hasHorns() { return true; }

13: } 

A. DeerReindeer,false

B. DeerReindeer,true

C. ReindeerDeer,false

D. ReindeerDeer,true

E. DeerAgeReindeer,false

F. DeerAgeReindeer,true

G. The code will not compile because of line 7.

H. The code will not compile because of line 12.

9. Which of the following statements are true? (Choose all that apply)

A. Checked exceptions are intended to be thrown by the JVM (and not the programmer).

B. Checked exceptions are required to be caught or declared.

C. Errors are intended to be thrown by the JVM (and not the programmer).

D. Errors are required to be caught or declared.

E. Runtime exceptions are intended to be thrown by the JVM (and not the programmer).

F. Runtime exceptions are required to be caught or declared.



Introduction xxxv

fl ast.indd 1½  4/2014 Page xxxv

10. Which are true of the following code? (Choose all that apply)
1:  import java.util.*;

2:  public class Grasshopper {

3:  public Grasshopper(String n) {

4:     name = n;

5:  }

6:  public static void main(String[] args) {

7:    Grasshopper one = new Grasshopper("g1");

8:    Grasshopper two = new Grasshopper("g2");

9:    one = two;

10:   two = null;

11:   one = null;

12: }

13:   private String name; }

A. Immediately after line 9, no grasshopper objects are eligible for garbage collection.

B. Immediately after line 10, no grasshopper objects are eligible for garbage collection.

C. Immediately after line 9, only one grasshopper object is eligible for garbage collection.

D. Immediately after line 10, only one grasshopper object is eligible for garbage collection.

E. Immediately after line 11, only one grasshopper object is eligible for garbage collection.

F. The code compiles.

G. The code does not compile.

11. What is the output of the following program?
1: public class FeedingSchedule {

2:  public static void main(String[] args) {

3:    int x = 5, j = 0;

4:    OUTER: for(int i=0; i<3; ) 

5:      INNER: do {

6:        i++; x++;

7:        if(x > 10) break INNER;

8:        x += 4;

9:        j++;

10:      } while(j <= 2);

11:    System.out.println(x);

12: } }

A. 10

B. 12

C. 13

D. 17

E. The code will not compile because of line 4.

F. The code will not compile because of line 6.



xxxvi Introduction

fl ast.indd 1½  4/2014 Page xxxvi

12. What is the result of the following program?
1: public class Egret {

2:   private String color;

3:   public Egret() {

4:     this("white");

5:   }

6:   public Egret(String color) {

7:     color = color;

8:   }

9:   public static void main(String[] args) {

10:    Egret e = new Egret();

11:    System.out.println("Color:" + e.color);

12:   }

13: }

A. Color:

B. Color:null

C. Color:White

D. Compiler error on line 4.

E. Compiler error on line 10.

F. Compiler error on line 11.

13. What is the output of the following program?
1: public class BearOrShark {

2:   public static void main(String[] args) {

3:     int luck = 10;

4:     if((luck>10 ? luck++: --luck)<10) {

5:       System.out.print("Bear");

6:     } if(luck<10) System.out.print("Shark");

7: } }

A. Bear

B. Shark

C. BearShark

D. The code will not compile because of line 4.

E. The code will not compile because of line 6.

F. The code compiles without issue but does not produce any output.

14. Assuming we have a valid, non-null HenHouse object whose value is initialized by the 
blank line shown here, which of the following are possible outputs of this application? 
(Choose all that apply)
1: class Chicken {}

2: interface HenHouse { public java.util.List<Chicken> getChickens(); }

3: public class ChickenSong {



Introduction xxxvii

fl ast.indd 1½  4/2014 Page xxxvii

4:   public static void main(String[] args) {

5:     HenHouse house = ______________

6:     Chicken chicken = house.getChickens().get(0);

7:     for(int i=0; i<house.getChickens().size(); 

8:       chicken = house.getChickens().get(i++)) {

9:       System.out.println("Cluck");

10: } } }

A. The code will not compile because of line 6.

B. The code will not compile because of lines 7–8.

C. The application will compile but not produce any output.

D. The application will output Cluck exactly once.

E. The application will output Cluck more than once.

F. The application will compile but produce an exception at runtime.

15. Which of the following statements can be inserted in the blank line so that the code will 
compile successfully? (Choose all that apply)
public interface CanSwim {}

public class Amphibian implements CanSwim {}

class Tadpole extends Amphibian {}

public class FindAllTadPole {  

  public static void main(String[] args) {    

    List<Tadpole> tadpoles = new ArrayList<Tadpole>();    

    for(Amphibian amphibian : tadpoles) {      

      ___________ tadpole = amphibian;

} } }

A. CanSwim

B. Long

C. Amphibian

D. Tadpole

E. Object

16. What individual changes, if any, would allow the following code to compile? (Choose all 
that apply)
1: public interface Animal { public default String getName() { return null; } }

2: interface Mammal { public default String getName() { return null; } }

3: abstract class Otter implements Mammal, Animal {}

A. The code compiles without issue.

B. Remove the default method modifier and method implementation on line 1.

C. Remove the default method modifier and method implementation on line 2.

D. Remove the default method modifier and method implementation on lines 1 and 2.

E. Change the return value on line 1 from null to "Animal".



xxxviii Introduction

fl ast.indd 1½  4/2014 Page xxxviii

F. Override the getName() method with an abstract method in the Otter class.

G. Override the getName() method with a concrete method in the Otter class.

17. Which of the following lines can be inserted at line 11 to print true? (Choose all that 
apply)
10: public static void main(String[] args) {

11:   // INSERT CODE HERE

12: }

13: private static boolean test(Predicate<Integer> p) {

14:   return p.test(5);

15: }

A. System.out.println(test(i -> i == 5));

B. System.out.println(test(i -> {i == 5;}));

C. System.out.println(test((i) -> i == 5));

D. System.out.println(test((int i) -> i == 5);

E. System.out.println(test((int i) -> {return i == 5;}));

F. System.out.println(test((i) -> {return i == 5;}));

18. Which of the following print out a date representing April 1, 2015? (Choose all that apply)

A. System.out.println(LocalDate.of(2015, Calendar.APRIL, 1));

B. System.out.println(LocalDate.of(2015, Month.APRIL, 1));

C. System.out.println(LocalDate.of(2015, 3, 1));

D. System.out.println(LocalDate.of(2015, 4, 1));

E. System.out.println(new LocalDate(2015, 3, 1));

F. System.out.println(new LocalDate(2015, 4, 1));

19. Bytecode is in a file with which extension?

A. .bytecode

B. .bytes

C. .class

D. .exe

E. .javac

F. .java

20. Which of the following are checked exceptions? (Choose all that apply)

A. Exception

B. IllegalArgumentException

C. IOException

D. NullPointerException

E. NumberFormatException

F. StackOverflowError

www.allitebooks.com

http://www.allitebooks.org


Introduction xxxix

fl ast.indd 1½  4/2014 Page xxxix

Answers to Assessment Test

1. E. Option E is correct because local variables require assignment before referencing 
them. Option D is incorrect because class and instance variables have default values 
and allow referencing. a_b defaults to a null value. Options A, B, and C are incorrect 
because identifiers may begin with a letter, underscore, or dollar sign. Options F and 
G are incorrect because the code does not compile. If a_b was an instance variable, the 
code would compile and output 0null. For more information, see Chapter 1.

2. C. String literals are used from the string pool. This means that s1 and s2 refer to the 
same object and are equal. Therefore, the first two print statements print true. The 
third print statement prints false because toString() uses a method to compute the 
value and it is not from the string pool. The final print statement again prints true 
because equals() looks at the values of String objects. For more information, see 
Chapter 3.

3. C, D, E. First, the method getTailLength() in the interface HasTail is assumed to be 
public, since it is part of an interface. The implementation of the method on line 3 is 
therefore an invalid override, as protected is a more restrictive access modifier than 
public, so option C is correct. Next, the class Cougar implements an overloaded ver-
sion of getTailLength(), but since the declaration in the parent class Puma is invalid, 
it needs to implement a public version of the method. Since it does not, the declaration 
of Puma is invalid, so option D is correct. Option E is incorrect, since Puma is marked 
abstract and cannot be instantiated. The overloaded method on line 11 is declared 
correctly, so option F is not correct. Finally, as the code has multiple compiler errors, 
options A, B, and G can be eliminated. For more information, see Chapter 5.

4. C. The code compiles and runs without issue; therefore, option F is incorrect. This type 
of problem is best examined one loop iteration at a time:

 ■ The loop continues as count loop expression evaluates to 0 < 3, which is true, 
with y taking a new value of 1. The value of y is set to:
y = (1 + 2 * 1) % 3

  = (1 + 2) % 3

  = 3 % 3

  = 0 

 ■ The first case block is called and the value of x is then set to:
x = 3 - 1 = 2

 ■ The loop continues as count loop expression evaluates to 1 < 3, which is true, 
with y taking a new value of 2. The value of y is set to:
y = (1 + 2 * 2) % 3

  = (1 + 4) % 3

  = 4 % 3 

  = 2 



xl Introduction

fl ast.indd 1½  4/2014 Page xl

 ■ The default block is called and the value of x is set to:
x = 2 - 1 = 1

 ■ The loop continues as the count loop expression evaluates to 2 < 3, which is true, 
with y taking a new value of 3. The value of y is set to:
y = (1 + 2 * 3) % 3

  = (1 + 6) % 3

  = 7 % 3 

  = 1 

 ■ The second case block is called and the value of x is then set to:
x = 1 + 5 = 6

 ■ The loop ends as the count loop expression evaluates to 3 < 3, with y also taking a 
new value of 4. The most recent value of x, 6, is output, so the answer is option C. 
For more information, see Chapter 2.

5. D. The code starts running and prints a and b on lines 13 and 15. Line 16 throws an 
exception, which is caught on line 17. After line 18 prints c, the finally block is run 
and d is printed. Then the try statement ends and e is printed on line 22. For more 
information, see Chapter 6.

6. B. The code compiles successfully, so options D and E are incorrect. The value of a 
cannot be changed by the addToInt method, no matter what the method does, because 
only a copy of the variable is passed into the parameter x. Therefore, a does not change 
and the output on line 9 is 15. For more information, see Chapter 4.

7. B. The array is allowed to use an anonymous initializer because it is in the same line as 
the declaration. The ArrayList uses the diamond operator allowed since Java 7. This 
specifies the type matches the one on the left without having to re-type it. After adding 
the two elements, list contains [6, 8]. We then replace the element at index 1 with 9, 
resulting in [6, 9]. Finally, we remove the element at index 0, leaving [9]. Option C 
is incorrect because arrays output something like that rather than an ArrayList. For 
more information, see Chapter 3.

8. A. The code compiles and runs without issue, so options G and H are incorrect. First, 
the Reindeer object is instantiated using the constructor that takes an int value. Since 
there is no explicit call to the parent constructor, the default no-argument super() 
is inserted as the first line of the constructor. The output is then Deer, followed by 
Reindeer in the child constructor, so only options A and B can be correct. Next, 
the method hasHorns() looks like an overridden method, but it is actually a hidden 
method since it is declared private in the parent class. Because the hidden method is 
referenced in the parent class, the parent version is used, so the code outputs false, 
and option A is the correct answer.

9. B, C. Only checked exceptions are required to be handled (caught) or declared. Run-
time exceptions are commonly thrown by both the JVM and programmer code. 
Checked exceptions are usually thrown by programmer code. Errors are intended to be 



Introduction xli

fl ast.indd 1½  4/2014 Page xli

thrown by the JVM. While a programmer could throw one, this would be a horrible 
practice. For more information, see Chapter 6.

10. C, D, F. Immediately after line 9, only Grasshopper g1 is eligible for garbage collection 
since both one and two point to Grasshopper g2. Immediately after line 10, we still 
only have Grasshopper g1 eligible for garbage collection. Reference one points to g1 
and reference two is null. Immediately after line 11, both Grasshopper objects are eli-
gible for garbage collection since both one and two point to null. The code does com-
pile. Although it is traditional to declare instance variables early in the class, you don’t 
have to. For more information, see Chapter 1.

11. B. The code compiles and runs without issue; therefore, options E and F are incorrect. 
This type of problem is best examined one loop iteration at a time:

 ■ On the first iteration of the outer loop i is 0, so the loop continues.

 ■ On the first iteration of the inner loop, i is updated to 1 and x to 6. The if-then 
statement branch is not executed, and x is increased to 10 and j to 1.

 ■ On the second iteration of the inner loop (since j = 1 and 1 <= 2), i is updated 
to 2 and x to 11. At this point, the if-then branch will evaluate to true for the 
remainder of the program run, which causes the flow to break out of the inner 
loop each time it is reached.

 ■ On the second iteration of the outer loop (since i = 2), i is updated to 3 and x to 
12. As before, the inner loop is broken since x is still greater than 10.

 ■ On the third iteration of the outer loop, the outer loop is broken, as i is already 
not less than 3. The most recent value of x, 12, is output, so the answer is option B. 
For more information, see Chapter 2.

12. B. Line 10 calls the constructor on lines 3–5. That constructor calls the other construc-
tor. However, the constructor on lines 6–8 assigns the method parameter to itself, 
which leaves the color instance variable on line 2 set to its default value of null. For 
more information, see Chapter 4.

13. C. The code compiles and runs without issue, so options D and E are correct. Remem-
ber that only one of the right-hand ternary expressions will be evaluated at runtime. 
Since luck is not less than 10, the second expression, --luck, will be evaluated, and 
since the pre-increment operator was used, the value returned will be 9, which is less 
than 10. So the first if-then statement will be visited and Bear will be output. Notice 
there is no else statement on line 6. Since luck is still less than 10, the second if-then 
statement will also be reached and Shark will be output; therefore, the correct answer 
is option C. For more information, see Chapter 2.

14. D, E, F. The code compiles without issue, so options A and B are incorrect. If house
.getChickens() returns an array of one element, the code will output Cluck once, so 
option D is correct. If house.getChickens() returns an array of multiple elements, the 
code will output Cluck once for each element in the array, so option E is correct. Alter-
natively, if house.getChickens() returns an array of zero elements, then the code will 



xlii Introduction

fl ast.indd 1½  4/2014 Page xlii

throw an IndexOutOfBoundsException on the call to house.getChickens().get(0); 
therefore, option C is not possible and option F is correct. The code will also throw an 
exception if the array returned by house.getChickens() is null, so option F is possible 
under multiple circumstances. For more information, see Chapter 2.

15. A, C, E. The for-each loop automatically casts each Tadpole object to an Amphibian
 reference, which does not require an explicit cast because Tadpole is a subclass of 
Amphibian. From there, any parent class or interface that Amphibian inherits from is 
permitted without an explicit cast. This includes CanSwim, the interface Amphibian 
implements, and Object, which all classes extend from, so options A and E are correct. 
Option C is also correct since the reference is being cast to the same type, so no explicit 
cast is required. Option B is incorrect, since Long is not a parent of Amphibian. Option 
D is incorrect as well, although an explicit cast to Tadpole on the right-hand side of the 
expression would be required to allow the code to compile. For more information, see 
Chapter 5.

16. D, F, G. The code does not compile, since a class cannot inherit two interfaces that 
both define default methods with the same signature, unless the class implementing 
the interfaces overrides it with an abstract or concrete method. Therefore, option A is 
incorrect and options F and G are correct. The alternate approach is to make the 
getName() method abstract in the interfaces, because an interface may inherit two 
abstract methods with the same signature. The change must be made to both inter-
faces, though, so options B and C are incorrect if taken individually, and option D is 
correct since the changes are taken together. For more information, see Chapter 5.

17. A, C, F. The only functional programming interface you need to memorize for the 
exam is Predicate. It takes a single parameter and returns a boolean. Lambda expres-
sions with one parameter are allowed to omit the parentheses around the parameter 
list, making options A and C correct. The return statement is optional when a single 
statement is in the body, making option F correct. Option B is incorrect because a 
return statement must be used if braces are included around the body. Options D and 
E are incorrect because the type is Integer in the predicate and int in the lambda. 
Autoboxing works for collections not inferring predicates. If these two were changed 
to Integer, they would be correct. For more information, see Chapter 4.

18. B, D. The new date APIs added in Java 8 use static methods rather than a constructor 
to create a new date, making options E and F incorrect. The months are indexed start-
ing with 1 in these APIs, making options A and C incorrect. Option A uses the old 
Calendar constants which are indexed from 0. Therefore, options B and D are correct. 
For more information, see Chapter 3.

19. C. Files with the .java extension contain the Java source code and are compiled to 
files with the .class extension that contain the bytecode. For more information, see 
Chapter 1.

20. A, C. Option A is the exception base class, which is a checked exception. Options B, 
D, and E extend RuntimeException directly or indirectly and therefore are unchecked 
exceptions. Option F is a throwable and not an exception, and so should not be caught 
or declared. For more information, see Chapter 6.



fl ast.indd 1½  4/2014 Page xliii

OCA: Oracle®

Certified Associate Java® 
SE 8 Programmer I 

Study Guide

Exam 1Z0-808





c01.indd 1½  4/2014 Page 1

Chapter 

1
Java Building Blocks

OCA EXAM OBJECTIVES COVERED IN THIS 
CHAPTER:

 ✓ Java Basics

 ■ Define the scope of variables

 ■ Define the structure of a Java class

 ■ Create executable Java applications with a main method; run 

a Java program from the command line; including console 

output

 ■ Import other Java packages to make them accessible in your 

code

 ■ Compare and contrast the features and components of Java 

such as platform independence, object orientation, encapsu-

lation, etc.

 ✓ Working with Java Data Types

 ■ Declare and initialize variables (including casting or primitive 

types)

 ■ Differentiate between object reference variables and primi-

tive variables

 ■ Know how to read or write to object fields

 ■ Explain an Object’s Lifecycle (creation, “dereference by 

reassignment” and garbage collection



c01.indd 1½  4/2014 Page 2

Welcome to the beginning of your journey to become certifi ed 
on Java. We assume this isn’t the fi rst Java programming book 
you’ve read. Although we do talk about the basics, we do so 

only because we want to make sure you have all the terminology and detail you’ll need for 
the OCA exam. If you’ve never written a Java program before, we recommend you pick up 
an introductory book on any version of Java—something like Head First Java, 2nd Edition 
(O’Reilly Media, 2005); Java for Dummies (For Dummies, 2014), or Thinking in Java, 4th 
Edition (Prentice Hall, 2006). (It’s okay if the book covers an older version of Java—even 
Java 1.3 is fi ne.) Then come back to this certifi cation study guide.

This chapter covers the fundamentals of Java. You’ll see how to defi ne and run a Java 
class, and learn about packages, variables, and the object life cycle.

Understanding the Java Class Structure

In Java programs, classes are the basic building blocks. When defi ning a class, you describe 
all the parts and characteristics of one of those building blocks. To use most classes, you 
have to create objects. An object is a runtime instance of a class in memory. All the various 
objects of all the different classes represent the state of your program.

In the following sections, we’ll look at fi elds, methods, and comments. We’ll also explore 
the relationship between classes and fi les. 

Fields and Methods
Java classes have two primary elements: methods, often called functions or procedures in 
other languages, and fi elds, more generally known as variables. Together these are called the 
members of the class. Variables hold the state of the program, and methods operate on that 
state. If the change is important to remember, a variable stores that change. That’s all classes 
really do. It’s the programmer who creates and arranges these elements in such a way that 
the resulting code is useful and, ideally, easy for other programmers to understand. 

Other building blocks include interfaces, which you’ll learn about in Chapter 5, “Class 
Design,” and enums, which you’ll learn about when you start studying for the OCP exam. 



Understanding the Java Class Structure 3

c01.indd 1½  4/2014 Page 3

The simplest Java class you can write looks like this:

1: public class Animal { 

2: }

Java calls a word with special meaning a keyword. The public keyword on line 1 means 
the class can be used by other classes. The class keyword indicates you’re defi ning a class. 
Animal gives the name of the class. Granted, this isn’t a very interesting class, so add your 
fi rst fi eld: 

1: public class Animal {

2:  String name;

3: }

The line numbers aren’t part of the program; they’re just there to make the 
code easier to talk about. 

On line 2, we defi ne a variable named name. We also defi ne the type of that variable to 
be a String. A String is a value that we can put text into, such as "this is a string". 
String is also a class supplied with Java. Next you can add methods:

1: public class Animal {

2:  String name;

3:  public String getName() {

4:    return name;

5:  }

6:  public void setName(String newName) {

7:    name = newName;

8:  }

9: }

On lines 3–5, you’ve defi ned your fi rst method. A method is an operation that can be 
called. Again, public is used to signify that this method may be called from other classes. 
Next comes the return type—in this case, the method returns a String. On lines 6–8 is 
another method. This one has a special return type called void. void means that no value at 
all is returned. This method requires information be supplied to it from the calling method; 
this information is called a parameter. setName has one parameter named newName, and it 
is of type String. This means the caller should pass in one String parameter and expect 
nothing to be returned. 

The full declaration of a method is called a method signature. In this example, can you 
identify the return type and parameters?

public int numberVisitors(int month)



4 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 4

The return type is int, which is a numeric type. There’s one parameter named month, 
which is of type int as well.

Comments
Another common part of the code is called a comment. Because comments aren’t execut-
able code, you can place them anywhere. Comments make your code easier to read. You 
won’t see many comments on the exam—the exam creators are trying to make the code 
diffi cult to read—but you’ll see them in this book as we explain the code. And we hope you 
use them in your own code. There are three types of comments in Java. The fi rst is called a 
single-line comment:

// comment until end of line

A single-line comment begins with two slashes. Anything you type after that on the 
same line is ignored by the compiler. Next comes the multiple-line comment:

/* Multiple

 * line comment

 */

A multiple-line comment (also known as a multiline comment) includes anything 
starting from the symbol /* until the symbol */. People often type an asterisk (*) at the 
beginning of each line of a multiline comment to make it easier to read, but you don’t have 
to. Finally, we have a Javadoc comment:

 /**

 * Javadoc multiple-line comment

 * @author Jeanne and Scott

 */

This comment is similar to a multiline comment except it starts with /**. This special 
syntax tells the Javadoc tool to pay attention to the comment. Javadoc comments have a 
specifi c structure that the Javadoc tool knows how to read. You won’t see a Javadoc com-
ment on the exam—just remember it exists so you can read up on it online when you start 
writing programs for others to use. 

As a bit of practice, can you identify which type of comment each of these fi ve words is 
in? Is it a single-line or a multiline comment?

/*

 * // anteater

 */

// bear

// // cat

www.allitebooks.com

http://www.allitebooks.org


Understanding the Java Class Structure 5

c01.indd 1½  4/2014 Page 5

// /* dog */

/* elephant */

/*

 * /* ferret */

 */

Did you look closely? Some of these are tricky. Even though comments technically aren’t 
on the exam, it is good to practice to look at code carefully.

Okay, on to the answers. anteater is in a multiline comment. Everything between /* 
and */ is part of a multiline comment—even if it includes a single-line comment within 
it! bear is your basic single-line comment. cat and dog are also single-line comments. 
Everything from // to the end of the line is part of the comment, even if it is another type 
of comment. elephant is your basic multiline comment.

The line with ferret is interesting in that it doesn’t compile. Everything from the fi rst /* 
to the fi rst */ is part of the comment, which means the compiler sees something like this:

/* */ */

We have a problem. There is an extra */. That’s not valid syntax—a fact the compiler is 
happy to inform you about.

Classes vs. Files
Most of the time, each Java class is defi ned in its own *.java fi le. It is usually public, 
which means any code can call it. Interestingly, Java does not require that the class be 
public. For example, this class is just fi ne:

1: class Animal {

2:  String name;

3: }

You can even put two classes in the same fi le. When you do so, at most one of the classes 
in the fi le is allowed to be public. That means a fi le containing the following is also fi ne:

1: public class Animal {

2:   private String name;

3: }

4: class Animal2 { 

5: }

If you do have a public class, it needs to match the fi lename. public class Animal2 
would not compile in a fi le named Animal.java. In Chapter 5, we will discuss what non-
public access means.



6 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 6

Writing a main() Method 

A Java program begins execution with its main() method. A main() method is the 
gateway between the startup of a Java process, which is managed by the Java Virtual 
Machine (JVM), and the beginning of the programmer’s code. The JVM calls on the 
underlying system to allocate memory and CPU time, access fi les, and so on. 

The main() method lets us hook our code into this process, keeping it alive long enough 
to do the work we’ve coded. The simplest possible class with a main() method looks like 
this: 

1: public class Zoo {

2:  public static void main(String[] args) {

3:

4:  }

5:}

This code doesn’t do anything useful (or harmful). It has no instructions other than 
to declare the entry point. It does illustrate, in a sense, that what you can put in a main() 
method is arbitrary. Any legal Java code will do. In fact, the only reason we even need a 
class structure to start a Java program is because the language requires it. To compile and 
execute this code, type it into a fi le called Zoo.java and execute the following: 

$ javac Zoo.java 

$ java Zoo 

If you don’t get any error messages, you were successful. If you do get error messages, check 
that you’ve installed a Java Development Kit (JDK) and not a Java Runtime Environment 
(JRE), that you have added it to the PATH, and that you didn’t make any typos in the example. 
If you have any of these problems and don’t know what to do, post a question with the error 
message you received in the Beginning Java forum at CodeRanch (www.coderanch.com/
forums/f-33/java).

To compile Java code, the fi le must have the extension .java. The name of the fi le must 
match the name of the class. The result is a fi le of bytecode by the same name, but with 
a .class fi lename extension. Bytecode consists of instructions that the JVM knows how 
to execute. Notice that we must omit the .class extension to run Zoo.java because the 
period has a reserved meaning in the JVM. 

The rules for what a Java code fi le contains, and in what order, are more detailed than 
what we have explained so far (there is more on this topic later in the chapter). To keep 
things simple for now, we’ll follow a subset of the rules: 

 ■ Each file can contain only one class.

 ■ The filename must match the class name, including case, and have a .java extension. 



Writing a main() Method  7

c01.indd 1½  4/2014 Page 7

Suppose we replace line 3 in Zoo.java with System.out.println("Welcome!");. When 
we compile and run the code again, we’ll get the line of output that matches what’s between 
the quotes. In other words, the program will output Welcome!.

Let’s fi rst review the words in the main() method’s signature, one at a time. The key-
word public is what’s called an access modifi er. It declares this method’s level of exposure 
to potential callers in the program. Naturally, public means anyplace in the program. 
You’ll learn about access modifi ers in Chapter 4, “Methods and Encapsulation.”

The keyword static binds a method to its class so it can be called by just the class name, 
as in, for example, Zoo.main(). Java doesn’t need to create an object to call the main() 
method—which is good since you haven’t learned about creating objects yet! In fact, the 
JVM does this, more or less, when loading the class name given to it. If a main() method 
isn’t present in the class we name with the .java executable, the process will throw an error 
and terminate. Even if a main() method is present, Java will throw an exception if it isn’t 
static. A nonstatic main() method might as well be invisible from the point of view of the 
JVM. We’ll see static again in Chapter 4. 

The keyword void represents the return type. A method that returns no data returns 
control to the caller silently. In general, it’s good practice to use void for methods that 
change an object’s state. In that sense, the main() method changes the program state 
from started to fi nished. We will explore return types in Chapter 4 as well. Excited for 
Chapter 4 yet?

Finally we arrive at the main() method’s parameter list, represented as an array of java.
lang.String objects. In practice, you can write String[] args, String args[] or String... 
args; the compiler accepts any of these. The variable name args hints that this list contains 
values that were read in (arguments) when the JVM started. You can use any name you like, 
though. The characters [] are brackets and represent an array. An array is a fi xed-size list of 
items that are all of the same type. The characters ... are called varargs (variable argument 
lists). You will learn about String in Chapter 2, “Operators and Statements.” Arrays and 
varargs will follow in Chapter 3, “Core Java APIs.”

Let’s see how to use the args parameter. First we modify the Zoo program to print out 
the fi rst two arguments passed in:

public class Zoo {

  public static void main(String[] args) {

    System.out.println(args[0]);

   System.out.println(args[1]);

} }

args[0] accesses the fi rst element of the array. That’s right: array indexes begin with 0 
in Java. To run it, type this: 

$ javac Zoo.java 

$ java Zoo Bronx Zoo 



8 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 8

The output is what you might expect:

Bronx

Zoo

The program correctly identifi es the fi rst two “words” as the arguments. Spaces are used 
to separate the arguments. If you want spaces inside an argument, you need to use quotes 
as in this example:

$ javac Zoo.java 

$ java Zoo "San Diego" Zoo 

Now we have a space in the output:

San Diego

Zoo

All command-line arguments are treated as String objects, even if they represent 
another data type:

$ javac Zoo.java 

$ java Zoo Zoo 2

No matter. You still get the values output as Strings. In Chapter 2, you’ll learn how to 
convert Strings to numbers.

Zoo

2

Finally, what happens if you don’t pass in enough arguments?

$ javac Zoo.java 

$ java Zoo Zoo

Reading args[0] goes fi ne and Zoo is printed out. Then Java panics. There’s no sec-
ond argument! What to do? Java prints out an exception telling you it has no idea what 
to do with this argument at position 1. (You’ll learn about exceptions in Chapter 6, 
“Exceptions.”)

        ZooException in thread "main" 

java.lang.ArrayIndexOutOfBoundsException: 1

       at mainmethod.Zoo.main(Zoo.java:7)

To review, you need to have a JDK to compile because it includes a compiler. You do not 
need to have a JDK to run the code—a JRE is enough. Java class fi les run on the JVM and 
therefore run on any machine with Java rather than just the machine or operating system 
they happened to have been compiled on.



Understanding Package Declarations and Imports 9

c01.indd 1½  4/2014 Page 9

Understanding Package Declarations 
and Imports

Java comes with thousands of built-in classes, and there are countless more from developers 
like you. With all those classes, Java needs a way to organize them. It handles this in a way 
similar to a fi le cabinet. You put all your pieces of paper in folders. Java puts classes in 
packages. These are logical groupings for classes.

We wouldn’t put you in front of a fi le cabinet and tell you to fi nd a specifi c paper. 
Instead, we’d tell you which folder to look in. Java works the same way. It needs you to tell 
it which packages to look in to fi nd code.

Suppose you try to compile this code:

public class ImportExample {

  public static void main(String[] args) {

    Random r = new Random();   // DOES NOT COMPILE

    System.out.println(r.nextInt(10));  

  }

}

The Java compiler helpfully gives you an error that looks like this: 

Random cannot be resolved to a type

This error could mean you made a typo in the name of the class. You double-check and 
discover that you didn’t. The other cause of this error is omitting a needed import state-
ment. Import statements tell Java which packages to look in for classes. Since you didn’t tell 
Java where to look for Random, it has no clue.

Trying this again with the import allows you to compile:

import java.util.Random;  // import tells us where to find Random

public class ImportExample {

  public static void main(String[] args) {

    Random r = new Random();   

    System.out.println(r.nextInt(10));  // print a number between 0 and 9

   }

}

Now the code runs; it prints out a random number between 0 and 9. Just like arrays, 
Java likes to begin counting with 0.

Java classes are grouped into packages. The import statement tells the compiler which 
package to look in to fi nd a class. This is similar to how mailing a letter works. 



10 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 10

Imagine you are mailing a letter to 123 Main St., Apartment 9. The mail carrier fi rst brings 
the letter to 123 Main St. Then she looks for the mailbox for apartment number 9. The 
address is like the package name in Java. The apartment number is like the class name in 
Java. Just as the mail carrier only looks at apartment numbers in the building, Java only 
looks for class names in the package.

Package names are hierarchical like the mail as well. The postal service starts with the 
top level, looking at your country fi rst. You start reading a package name at the begin-
ning too. If it begins with java or javax, this means it came with the JDK. If it starts with 
something else, it likely shows where it came from using the website name in reverse. From 
example, com.amazon.java8book tells us the code came from amazon.com. After the web-
site name, you can add whatever you want. For example, com.amazon.java8.my.name also 
came from amazon.com. Java calls more detailed packages child packages. com.amazon
.java8book is a child package of com.amazon. You can tell because it’s longer and thus 
more specifi c.

You’ll see package names on the exam that don’t follow this convention. Don’t be 
surprised to see package names like a.b.c. The rule for package names is that they are 
mostly letters or numbers separated by dots. Technically, you’re allowed a couple of other 
characters between the dots. The rules are the same as for variable names, which you’ll see 
later in the chapter. The exam may try to trick you with invalid variable names. Luckily, it 
doesn’t try to trick you by giving invalid package names.

In the following sections, we’ll look at imports with wildcards, naming confl icts with 
imports, how to create a package of your own, and how the exam formats code.

Wildcards
Classes in the same package are often imported together. You can use a shortcut to import 
all the classes in a package:

import java.util.*;    // imports java.util.Random among other things

public class ImportExample {

  public static void main(String[] args) {

    Random r = new Random();

    System.out.println(r.nextInt(10));

  }

}

In this example, we imported java.util.Random and a pile of other classes. The * is a 
wildcard that matches all classes in the package. Every class in the java.util package is 
available to this program when Java compiles it. It doesn’t import child packages, fi elds, or 
methods; it imports only classes. (Okay, it’s only classes for now, but there’s a special type 
of import called the “static import” that imports other types. You’ll learn more about that 
in Chapter 4.)

You might think that including so many classes slows down your program, but it doesn’t. The 
compiler fi gures out what’s actually needed. Which approach you choose is personal preference. 



Understanding Package Declarations and Imports 11

c01.indd 1½  4/2014 Page 11

Listing the classes used makes the code easier to read, especially for new programmers. Using the 
wildcard can shorten the import list. You’ll see both approaches on the exam.

Redundant Imports
Wait a minute! We’ve been referring to System without an import and Java found it just 
fi ne. There’s one special package in the Java world called java.lang. This package is 
special in that it is automatically imported. You can still type this package in an import 
statement, but you don’t have to. In the following code, how many of the imports do you 
think are redundant?

1: import java.lang.System;

2: import java.lang.*;

3: import java.util.Random;

4: import java.util.*;

5: public class ImportExample {

6:  public static void main(String[] args) {

7:    Random r = new Random();

8:    System.out.println(r.nextInt(10));

9:  }

10: }

The answer is that three of the imports are redundant. Lines 1 and 2 are redundant 
because everything in java.lang is automatically considered to be imported. Line 4 is also 
redundant in this example because Random is already imported from java.util.Random. 
If line 3 wasn’t present, java.util.* wouldn’t be redundant, though, since it would cover 
importing Random.

Another case of redundancy involves importing a class that is in the same package as the 
class importing it. Java automatically looks in the current package for other classes.

Let’s take a look at one more example to make sure you understand the edge cases for 
imports. For this example, Files and Paths are both in the package java.nio.file. You 
don’t need to memorize this package for the OCA exam (but you should know it for the 
OCP exam). When testing your understanding of packages and imports, the OCA exam 
will use packages you may never have seen before. The question will let you know which 
package the class is in if you need to know that in order to answer the question.

What imports do you think would work to get this code to compile?

public class InputImports {

  public void read(Files files) {

    Paths.get("name");

  }

}



12 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 12

There are two possible answers. The shorter one is to use a wildcard to import both at 
the same time:

import java.nio.file.*;

The other answer is to import both classes explicitly:

import java.nio.file.Files;

import java.nio.file.Paths;

Now let’s consider some imports that don’t work:

import java.nio.*; // NO GOOD – a wildcard only matches
                     //class names, not "file.*Files"

import java.nio.*.*; // NO GOOD – you can only have one wildcard 
                       //and it must be at the end

import java.nio.files.Paths.*; // NO GOOD – you cannot import methods
                                  //only class names

Naming Conflicts
One of the reasons for using packages is so that class names don’t have to be unique across 
all of Java. This means you’ll sometimes want to import a class that can be found in mul-
tiple places. A common example of this is the Date class. Java provides implementations 
of java.util.Date and java.sql.Date. This is another example where you don’t need to 
know the package names for the OCA exam—they will be provided to you. What import 
could we use if we want the java.util.Date version?

public class Conflicts {

  Date date;

  // some more code

}

The answer should be easy by now. You can write either import java.util.*; or 
import java.util.Date;. The tricky cases come about when other imports are present:

import java.util.*;

import java.sql.*; // DOES NOT COMPILE

When the class is found in multiple packages, Java gives you the compiler error:

The type Date is ambiguous

In our example, the solution is easy—remove the java.sql.Date import that we don’t 
need. But what do we do if we need a whole pile of other classes in the java.sql package?

import java.util.Date;

import java.sql.*;



Understanding Package Declarations and Imports 13

c01.indd 1½  4/2014 Page 13

Ah, now it works. If you explicitly import a class name, it takes precedence over any 
wildcards present. Java thinks, “Okay! The programmer really wants me to assume use of 
the java.util.Date class.” 

One more example. What does Java do with “ties” for precedence?

import java.util.Date;

import java.sql.Date;

Java is smart enough to detect that this code is no good. As a programmer, you’ve 
claimed to explicitly want the default to be both the java.util.Date and java.sql.Date 
implementations. Because there can’t be two defaults, the compiler tells you:

The import java.sql.Date collides with another import statement

If You Really Need to Use Two Classes with the Same Name…

Sometimes you really do want to use Date from two different packages. When this hap-

pens, you can pick one to use in the import and use the other’s fully qualifi ed class name 

(the package name, a dot, and the class name) to specify that it’s special. For example:

import java.util.Date;

public class Conflicts {

 Date date;

 java.sql.Date sqlDate;

}

Or you could have neither with an import and always use the fully qualifi ed class name:

public class Conflicts {

 java.util.Date date;

 java.sql.Date sqlDate;

}

Creating a New Package
Up to now, all the code we’ve written in this chapter has been in the default package. This 
is a special unnamed package that you should use only for throwaway code. You can tell 
the code is in the default package, because there’s no package name. On the exam, you’ll 
see the default package used a lot to save space in code listings. In real life, always name 
your packages to avoid naming confl icts and to allow others to reuse your code.



14 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 14

Now it’s time to create a new package. The directory structure on your computer is 
related to the package name. Suppose we have these two classes:

C:\temp\packagea\ClassA.java

package packagea;

public class ClassA {

}

C:\temp\packageb\ClassB.java

package packageb;

import packagea.ClassA;

public class ClassB {

  public static void main(String[] args) {

    ClassA a;

    System.out.println("Got it");

  }

}

When you run a Java program, Java knows where to look for those package names. In this 
case, running from C:\temp works because both packagea and packageb are underneath it.

Compiling Code with Packages

You’ll learn Java much more easily by using the command line to compile and test 

your examples. Once you know the Java syntax well, you can switch to an integrated 

development environment (IDE) like Eclipse. An IDE will save you time in coding. But 

for the exam, your goal is to know details about the language and not have the IDE hide 

them for you.

Follow this example to make sure you know how to use the command line. If you have 

any problems following this procedure, post a question in the Beginning Java forum at 

CodeRanch (www.coderanch.com/forums/f-33/java). Describe what you tried and what 

the error said. 

Windows Setup

Create the two fi les:

 ■ C:\temp\packagea\ClassA.java 

 ■ C:\temp\packageb\ClassB.java

Then type this command:

cd C:\temp

www.allitebooks.com

http://www.allitebooks.org


Understanding Package Declarations and Imports 15

c01.indd 1½  4/2014 Page 15

Mac/Linux Setup

Create the two fi les:

 ■ /tmp/packagea/ClassA.java 

 ■ /tmp/packageb/ClassB.java

Then type this command: 

cd /tmp

To Compile

Type this command:

javac packagea/ClassA.java packageb/ClassB.java 

If this command doesn’t work, you’ll get an error message. Check your fi les carefully for 

typos against the provided fi les. If the command does work, two new fi les will be created: 

packagea/ClassA.class and packageb/ClassB.class.

To Run

Type this command:

java packageb.ClassB

If it works, you’ll see Got it printed. You might have noticed we typed ClassB rather than 

ClassB.class. In Java you don’t pass the extension when running a program.

Class Paths and JARs

You can also specify the location of the other fi les explicitly using a class path. This tech-

nique is useful when the class fi les are located elsewhere or in special JAR fi les. A JAR 

fi le is like a zip fi le of mainly Java class fi les. This goes beyond what you’ll need to do on 

version 8 of the exam, although it appears on older versions.

On Windows, you type the following:

java -cp ".;C:\temp\someOtherLocation;c:\temp\myJar.jar" myPackage.MyClass

And on Mac OS/Linux, you type this:

java -cp ".:/tmp/someOtherLocation:/tmp/myJar.jar" myPackage.MyClass

The dot indicates you want to include the current directory in the class path. The rest of 

the command says to look for loose class fi les (or packages) in someOtherLocation and 

within myJar.jar. Windows uses semicolons to separate parts of the class path; other 

operating systems use colons.

Finally, you can use a wildcard (*) to match all the JARs in a directory. Here’s an example:

java -cp "C:\temp\directoryWithJars\*" myPackage.MyClass

This command will add all the JARs to the class path that are in directoryWithJars. It 

won’t include any JARs in the class path that are in a subdirectory of directoryWithJars.



16 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 16

Code Formatting on the Exam
Not all questions will include the imports. If the exam isn’t asking about imports in the 
question, it will often omit the imports to save space. You’ll see examples with line numbers 
that don’t begin with 1 in this case. The question is telling you, “Don’t worry—imagine 
the code we omitted is correct; just focus on what I’m giving you.” This means when you 
do see the line number 1 or no line numbers at all, you have to make sure imports aren’t 
missing. Another thing the exam does to save space is to merge code on the same line. You 
should expect to see code like the following and to be asked whether it compiles. (You’ll 
learn about ArrayList in Chapter 3—assume that part is good for now.)

6: public void method(ArrayList list) {

7:  if (list.isEmpty()) { System.out.println("e");

8:  } else { System.out.println("n");

9: }  }

The answer here is that it does compile because the code starts below the imports. Now, 
what about this one? Does it compile?

1: public class LineNumbers {

2: public void method(ArrayList list) {

3:  if (list.isEmpty()) { System.out.println("e");

4:  } else { System.out.println("n");

5: }  } }

For this one, you would answer “Does not compile.” Since the code begins with line 1, 
you don’t get to assume that valid imports were provided earlier. The exam will let 
you know what package classes are in unless they’re covered in the objectives. You’ll 
be expected to know that ArrayList is in java.util—at least you will once you get to 
Chapter 3 of this book! 

You’ll also see code that doesn’t have a main() method. When this happens, assume 
the main() method, class defi nition, and all necessary imports are present. You’re just 
being asked if the part of the code you’re shown compiles when dropped into valid sur-
rounding code.

Creating Objects

Our programs wouldn’t be able to do anything useful if we didn’t have the ability to create 
new objects. Remember that an object is an instance of a class. In the following sections, 
we’ll look at constructors, object fi elds, instance initializers, and the order in which values 
are initialized.



Creating Objects 17

c01.indd 1½  4/2014 Page 17

Constructors
To create an instance of a class, all you have to do is write new before it. For example:

Random r = new Random();

First you declare the type that you’ll be creating (Random) and give the variable a name 
(r). This gives Java a place to store a reference to the object. Then you write new Random() 
to actually create the object.

Random() looks like a method since it is followed by parentheses. It’s called a construc-
tor, which is a special type of method that creates a new object. Now it’s time to defi ne a 
constructor of your own:

public class Chick {

  public Chick() {

    System.out.println("in constructor");

  }

}

There are two key points to note about the constructor: the name of the constructor 
matches the name of the class, and there’s no return type. You’ll likely see a method like 
this on the exam:

public void Chick() { } // NOT A CONSTRUCTOR

When you see a method name beginning with a capital letter and having a return type, 
pay special attention to it. It is not a constructor since there’s a return type. It’s a regular 
method that won’t be called when you write new Chick().

The purpose of a constructor is to initialize fi elds, although you can put any code in 
there. Another way to initialize fi elds is to do so directly on the line on which they’re 
declared. This example shows both approaches: 

public class Chicken {

  int numEggs = 0;// initialize on line

  String name;

  public Chicken() {

    name = "Duke";// initialize in constructor

  } }

For most classes, you don’t have to code a constructor—the compiler will supply a “do 
nothing” default constructor for you. There’s one scenario that requires you to declare a 
constructor that you’ll learn about in Chapter 5.



18 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 18

Reading and Writing Object Fields
It’s possible to read and write instance variables directly from the caller. In this example, a 
mother swan lays eggs:

public class Swan {

  int numberEggs;// instance variable

  public static void main(String[] args) {

    Swan mother = new Swan();

    mother.numberEggs = 1;    // set variable

    System.out.println(mother.numberEggs);  // read variable

  }

}

Reading a variable is known as getting it. The class gets numberEggs directly to print it 
out. Writing to a variable is known as setting it. This class sets numberEggs to 1. 

In Chapter 4, you’ll learn how to protect the Swan class from having someone set a nega-
tive number of eggs.

You can even read and write fi elds directly on the line declaring them:

1: public class Name {

2:   String first = "Theodore";

3:   String last = "Moose";

4:   String full = first + last;

5: {

Lines 2 and 3 both write to fi elds. Line 4 does both. It reads the fi elds first and last. It 
then writes the fi eld full.

Instance Initializer Blocks
When you learned about methods, you saw braces ({}). The code between the braces is 
called a code block. Sometimes this code is called being inside the braces. Anywhere you 
see braces is a code block.

Sometimes code blocks are inside a method. These are run when the method is called. 
Other times, code blocks appear outside a method. These are called instance initializers. In 
Chapter 5, you’ll learn how to use a static initializer.

How many blocks do you see in this example? How many instance initializers do 
you see?

3: public static void main(String[] args) {

4:   { System.out.println("Feathers"); }

5: }

6: { System.out.println("Snowy"); }



Creating Objects 19

c01.indd 1½  4/2014 Page 19

There are three code blocks and one instance initializer. Counting code blocks is easy: 
you just count the number of pairs of braces. If there aren’t the same number of open ({) 
and close (}) braces, the code doesn’t compile. It doesn’t matter that one set of braces is 
inside the main() method—it still counts.

When counting instance initializers, keep in mind that it does matter whether the braces 
are inside a method. There’s only one pair of braces outside a method. Line 6 is an instance 
initializer.

Order of Initialization
When writing code that initializes fi elds in multiple places, you have to keep track of the 
order of initialization. We’ll add some more rules to the order of initialization in Chapters 4 
and 5. In the meantime, you need to remember:

 ■ Fields and instance initializer blocks are run in the order in which they appear in 
the file.

 ■ The constructor runs after all fields and instance initializer blocks have run.

Let’s look at an example:

1: public class Chick {

2:  private String name = "Fluffy";

3:  { System.out.println("setting field"); }

4:  public Chick() {

5:    name = "Tiny";

6:    System.out.println("setting constructor");

7:  }

8:   public static void main(String[] args) {

9:     Chick chick = new Chick();

10:   System.out.println(chick.name); } }

Running this example prints this:

setting field

setting constructor

Tiny

Let’s look at what’s happening here. We start with the main() method because that’s 
where Java starts execution. On line 9, we call the constructor of Chick. Java creates a new 
object. First it initializes name to "Fluffy" on line 2. Next it executes the print statement 
in the instance initializer on line 3. Once all the fi elds and instance initializers have run, 
Java returns to the constructor. Line 5 changes the value of name to "Tiny" and line 6 prints 
another statement. At this point, the constructor is done executing and goes back to the 
print statement on line 10.



20 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 20

Order matters for the fi elds and blocks of code. You can’t refer to a variable before it has 
been initialized: 

{ System.out.println(name); }  // DOES NOT COMPILE

private String name = "Fluffy";

You should expect to see a question about initialization on the exam. Let’s try one more. 
What do you think this code prints out?

public class Egg {

  public Egg() {

    number = 5;

  }

  public static void main(String[] args) {

    Egg egg = new Egg();

    System.out.println(egg.number);

  }

  private int number = 3;

  { number = 4; } }

If you answered 5, you got it right. Fields and blocks are run fi rst in order, setting 
number to 3 and then 4. Then the constructor runs, setting number to 5.

Distinguishing Between Object 
References and Primitives

Java applications contain two types of data: primitive types and reference types. In this 
section, we’ll discuss the differences between a primitive type and a reference type. 

Primitive Types
Java has  eight built-in data types, referred to as the Java primitive types. These eight data 
types represent the building blocks for Java objects, because all Java objects are just a com-
plex collection of these primitive data types. The exam assumes you are well versed in the 
eight primitive data types, their relative sizes, and what can be stored in them. 



Distinguishing Between Object References and Primitives 21

c01.indd 1½  4/2014 Page 21

Table 1.1 shows the Java primitive types together with their size in bytes and the range of 
values that each holds. 

TA B LE 1.1   Java primitive types

Keyword Type Example

boolean true or false true

byte 8-bit integral value 123

short 16-bit integral value 123

int 32-bit integral value 123

long 64-bit integral value 123

float 32-bit floating-point value 123.45f

double 64-bit floating-point value 123.456

char 16-bit Unicode value 'a'

There’s a lot of information in Table 1.1. Let’s look at some key points:

 ■ float and double are used for floating-point (decimal) values.

 ■ A float requires the letter f following the number so Java knows it is a float.

 ■ byte, short, int, and long are used for numbers without decimal points.

 ■ Each numeric type uses twice as many bits as the smaller similar type. For example, 
short uses twice as many bits as byte does.

You won’t be asked about the exact sizes of most of these types. You should know that 
a byte can hold a value from –128 to 127. So you aren’t stuck memorizing this, let’s look 
at how Java gets that. A byte is 8 bits. A bit has two possible values. (These are basic com-
puter science defi nitions that you should memorize.)  28 is 2 × 2 = 4 × 2 = 8 × 2 = 16 × 2 = 
32 × 2 = 64 × 2 = 128 × 2 = 256. Since 0 needs to be included in the range, Java takes it 
away from the positive side. Or if you don’t like math, you can just memorize it.

The number of bits is used by Java when it fi gures out how much memory to reserve for 
your variable. For example, Java allocates 32 bits if you write this:

int num;



22 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 22

What Is the Largest int?

You do not have to know this for the exam, but the maximum number an int can hold is 

2,147,483,647. How do we know this? One way is to have Java tell us:

System.out.println(Integer.MAX_VALUE);

The other way is with math. An int is 32 bits. 232 is 4,294,967,296. Divide that by 2 and 

you get 2,147,483,648. Then subtract 1 as we did with bytes and you get 2,147,483,647. It’s 

easier to just ask Java to print the value, isn’t it?

There are a few more things you should know about numeric primitives. When a number 
is present in the code, it is called a literal. By default, Java assumes you are defi ning an int 
value with a literal. In this example, the number listed is bigger than what fi ts in an int. 
Remember, you aren’t expected to memorize the maximum value for an int. The exam will 
include it in the question if it comes up.

long max = 3123456789;  // DOES NOT COMPILE

Java complains the number is out of range. And it is—for an int. However, we don’t 
have an int. The solution is to add the character L to the number:

long max = 3123456789L;  // now Java knows it is a long

Alternatively, you could add a lowercase l to the number. But please use the uppercase L. 
The lowercase l looks like the number 1.

Another way to specify numbers is to change the “base.” When you learned how to 
count, you studied the digits 0–9. This numbering system is called base 10 since there are 
10 numbers. It is also known as the decimal number system. Java allows you to specify dig-
its in several other formats:

 ■ octal (digits 0–7), which uses the number 0 as a prefix—for example, 017

 ■ hexadecimal (digits 0–9 and letters A–F), which uses the number 0 followed by x or X 
as a prefix—for example, 0xFF

 ■ binary (digits 0–1), which uses the number 0 followed by b or B as a prefix—for exam-
ple, 0b10

You won’t need to convert between number systems on the exam. You’ll have to recog-
nize valid literal values that can be assigned to numbers. 



Distinguishing Between Object References and Primitives 23

c01.indd 1½  4/2014 Page 23

Converting Back to Binary

Although you don’t need to convert between number systems on the exam, we’ll look at 

one example in case you’re curious:

System.out.println(56);       // 56

System.out.println(0b11);     // 3

System.out.println(017);      // 15

System.out.println(0x1F);     // 31

First we have our normal base 10 value. We know you already know how to read that, but 

bear with us. The rightmost digit is 6, so it’s “worth” 6. The second-to-rightmost digit is 

5, so it’s “worth” 50 (5 times 10.) Adding these together, we get 56.

Next we have binary, or base 2. The rightmost digit is 1 and is “worth” 1. The second-to-

rightmost digit is also 1. In this case, it’s “worth” 2 (1 times 2) because the base is 2. Add-

ing these gets us 3.

Then comes octal, or base 8. The rightmost digit is 7 and is “worth” 7. The second-to-

rightmost digit is 1. In this case, it’s “worth” 8 (1 times 8) because the base is 8. Adding 

these gets us 15.

Finally, we have hexadecimal, or base 16, which is also known as hex. The rightmost 

“digit” is F and it’s “worth” 15 (9 is “worth” 9, A is “worth” 10, B is “worth” 11, and so 

forth). The second-to-rightmost digit is 1. In this case, it’s “worth” 16 (1 times 16) because 

the base is 16. Adding these gets us 31.

The last thing you need to know about numeric literals is a feature added in Java 7. You 
can have underscores in numbers to make them easier to read:

int million1 = 1000000;

int million2 = 1_000_000;

We’d rather be reading the latter one because the zeroes don’t run together. You can add 
underscores anywhere except at the beginning of a literal, the end of a literal, right before a 
decimal point, or right after a decimal point. Let’s look at a few examples:

double notAtStart = _1000.00;        // DOES NOT COMPILE 

double notAtEnd = 1000.00_;          // DOES NOT COMPILE 

double notByDecimal = 1000_.00;      // DOES NOT COMPILE 

double annoyingButLegal = 1_00_0.0_0;  // this one compiles



24 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 24

Reference Types
A reference type refers to an object (an instance of a class). Unlike primitive types that hold 
their values in the memory where the variable is allocated, references do not hold the value 
of the object they refer to. Instead, a reference “points” to an object by storing the memory 
address where the object is located, a concept referred to as a pointer. Unlike other 
languages, Java does not allow you to learn what the physical memory address is. You can 
only use the reference to refer to the object.

Let’s take a look at some examples that declare and initialize reference types. Suppose 
we declare a reference of type java.util.Date and a reference of type String: 

java.util.Date today;

String greeting;

The today variable is a reference of type Date and can only point to a Date object. The 
greeting variable is a reference that can only point to a String object. A value is assigned 
to a reference in one of two ways: 

 ■ A reference can be assigned to another object of the same type.

 ■ A reference can be assigned to a new object using the new keyword. 

For example, the following statements assign these references to new objects: 

today = new java.util.Date();

greeting = "How are you?";

The today reference now points to a new Date object in memory, and today can be used 
to access the various fi elds and methods of this Date object. Similarly, the greeting refer-
ence points to a new String object, "How are you?". The String and Date objects do not 
have names and can be accessed only via their corresponding reference. Figure 1.1 shows 
how the reference types appear in memory. 

F I GU R E 1.1   An object in memory can be accessed only via a reference.

today

A Date reference
A Date object

day
29

month
7

year
2011

greeting

A String reference

A String object

How are you?

www.allitebooks.com

http://www.allitebooks.org


Declaring and Initializing Variables 25

c01.indd 1½  4/2014 Page 25

Key Differences
There are a few important differences you should know between primitives and reference 
types. First, reference types can be assigned null, which means they do not currently refer 
to an object. Primitive types will give you a compiler error if you attempt to assign them 
null. In this example, value cannot point to null because it is of type int:

int value = null;   // DOES NOT COMPILE

String s = null;

Next, reference types can be used to call methods when they do not point to null. 
Primitives do not have methods declared on them. In this example, we can call a method on 
reference since it is of a reference type. You can tell length is a method because it has () 
after it. The following line is gibberish. No methods exist on len because it is an int primi-
tive. Primitives do not have methods.

String reference = "hello";

int len = reference.length();

int bad = len.length(); // DOES NOT COMPILE

Finally, notice that all the primitive types have lowercase type names. All classes that 
come with Java begin with uppercase. You should follow this convention for classes you 
create as well.

Declaring and Initializing Variables

We’ve seen some variables already. A variable is a name for a piece of memory that stores 
data. When you declare a variable, you need to state the variable type along with giving it a 
name. For example, the following code declares two variables. One is named zooName and 
is of type String. The other is named numberAnimals and is of type int.

String zooName;

int numberAnimals;

Now that we’ve declared a variable, we can give it a value. This is called initializing a 
variable. To initialize a variable, you just type the variable name followed by an equal sign, 
followed by the desired value:

zooName = "The Best Zoo";

numberAnimals = 100;

Since you often want to initialize a variable right away, you can do so in the same state-
ment as the declaration. For example, here we merge the previous declarations and initial-
izations into more concise code:

String zooName = "The Best Zoo";

int numberAnimals = 100;



26 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 26

In the following sections, we’ll look at how to declare multiple variables in one-line and 
legal identifi ers.

Declaring Multiple Variables
You can also declare and initialize multiple variables in the same statement. How many 
variables do you think are declared and initialized in the following two lines?

String s1, s2;

String s3 = "yes", s4 = "no";

Four String variables were declared: s1, s2, s3, and s4. You can declare many variables 
in the same declaration as long as they are all of the same type. You can also initialize any 
or all of those values inline. In the previous example, we have two initialized variables: s3 
and s4. The other two variables remain declared but not yet initialized.

This is where it gets tricky. Pay attention to tricky things! The exam will attempt to trick 
you. Again, how many variables do you think are declared and initialized in this code?

int i1, i2, i3 = 0;

As you should expect, three variables were declared: i1, i2, and i3. However, only one 
of those values was initialized: i3. The other two remain declared but not yet initialized. 
That’s the trick. Each snippet separated by a comma is a little declaration of its own. The 
initialization of i3 only applies to i3. It doesn’t have anything to do with i1 or i2 despite 
being in the same statement.

Another way the exam could try to trick you is to show you code like this line:

int num, String value; // DOES NOT COMPILE

This code doesn’t compile because it tries to declare multiple variables of different types 
in the same statement. The shortcut to declare multiple variables in the same statement only 
works when they share a type.

To make sure you understand this, see if you can fi gure out which of the following are 
legal declarations. “Legal,” “valid,” and “compiles” are all synonyms in the Java exam 
world. We try to use all the terminology you could encounter on the exam.

boolean b1, b2;

String s1 = "1", s2;

double d1, double d2;

int i1; int i2;

int i3; i4;

The fi rst statement is legal. It declares two variables without initializing them. The 
second statement is also legal. It declares two variables and initializes only one of them. 

The third statement is not legal. Java does not allow you to declare two different types 
in the same statement. Wait a minute! Variables d1 and d2 are the same type. They are both 



Declaring and Initializing Variables 27

c01.indd 1½  4/2014 Page 27

of type double. Although that’s true, it still isn’t allowed. If you want to declare multiple 
variables in the same statement, they must share the same type declaration and not repeat 
it. double d1, d2; would have been legal.

The fourth statement is legal. Although int does appear twice, each one is in a separate 
statement. A semicolon (;) separates statements in Java. It just so happens there are two 
completely different statements on the same line. The fi fth statement is not legal. Again, 
we have two completely different statements on the same line. The second one is not a 
valid declaration because it omits the type. When you see an oddly placed semicolon on the 
exam, pretend the code is on separate lines and think about whether the code compiles that 
way. In this case, we have the following:

int i1; 

int i2;

int i3; 

i4;// DOES NOT COMPILE

Looking at the last line on its own, you can easily see that the declaration is invalid. 
And yes, the exam really does cram multiple statements onto the same line—partly to 
try to trick you and partly to fi t more code on the screen. In the real world, please limit 
yourself to one declaration per statement and line. Your teammates will thank you for the 
readable code.

Identifiers
It probably comes as no surprise that Java has precise rules about identifi er names. Luckily, 
the same rules for identifi ers apply to anything you are free to name, including variables, 
methods, classes, and fi elds. 

There are only three rules to remember for legal identifi ers:

 ■ The name must begin with a letter or the symbol $ or _. 

 ■ Subsequent characters may also be numbers. 

 ■ You cannot use the same name as a Java reserved word. As you might imagine, a 
reserved word is a keyword that Java has reserved so that you are not allowed to use it. 
Remember that Java is case sensitive, so you can use versions of the keywords that only 
differ in case. Please don’t, though.

Don’t worry—you won’t need to memorize the full list of reserved words. The exam will 
only ask you about ones you’ve already learned, such as class. The following is a list of all 
the reserved words in Java. const and goto aren’t actually used in Java. They are reserved 
so that people coming from other languages don’t use them by accident—and in theory, in 
case Java wants to use them one day.



28 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 28

abstract assert boolean break byte

case catch char class const*

continue default do double else

enum extends false final finally

float for goto* if implements

import instanceof int interface long

native new null package private

protected public return short static

strictfp super switch synchronized this

throw throws transient true try

void volatile while

Prepare to be tested on these rules. The following examples are legal: 

okidentifier

$OK2Identifier 

_alsoOK1d3ntifi3r

__SStillOkbutKnotsonice$ 

These examples are not legal: 

3DPointClass  // identifiers cannot begin with a number

hollywood@vine // @ is not a letter, digit, $ or _

*$coffee // * is not a letter, digit, $ or _

public   // public is a reserved word 

Although you can do crazy things with identifi er names, you shouldn’t. Java has con-
ventions so that code is readable and consistent. This consistency includes CamelCase. In 
CamelCase, each word begins with an uppercase letter. This makes multiple-word variable 
names easier to read. Which would you rather read: Thisismyclass name or ThisIsMyClass 
name? The exam will mostly use common conventions for identifi ers, but not always. When 
you see a nonstandard identifi er, be sure to check if it is legal. If not, you get to mark the 
answer “does not compile” and skip analyzing everything else in the question.



Understanding Default Initialization of Variables 29

c01.indd 1½  4/2014 Page 29

Identifi ers in the Real World

Most Java developers follow these conventions for identifi er names:

 ■ Method and variables names begin with a lowercase letter followed by CamelCase.

 ■ Class names begin with an uppercase letter followed by CamelCase. Don’t start any 

identifi ers with $. The compiler uses this symbol for some fi les.

Also, know that valid letters in Java are not just characters in the English alphabet. Java 

supports the Unicode character set, so there are more than 45,000 characters that can 

start a legal Java identifi er. A few hundred more are non-Arabic numerals that may 

appear after the fi rst character in a legal identifi er. Luckily, you don’t have to worry about 

memorizing those for the exam. If you are in a country that doesn’t use the English alpha-

bet, this is useful to know for a job.

Understanding Default Initialization of 
Variables

Before you can use a variable, it needs a value. Some types of variables get this value 
set automatically, and others require the programmer to specify it. In the following 
sections, we’ll look at the differences between the defaults for local, instance, and 
class variables.

Local Variables
A local variable is a variable defi ned within a method. Local variables must be initialized 
before use. They do not have a default value and contain garbage data until initialized. The 
compiler will not let you read an uninitialized value. For example, the following code 
generates a compiler error: 

4: public int notValid() {

5:  int y = 10; 

6:  int x; 

7:  int reply = x + y; // DOES NOT COMPILE

8:  return reply;

9: } 



30 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 30

y is initialized to 10. However, because x is not initialized before it is used in the expres-
sion on line 7, the compiler generates the following error: 

Test.java:5: variable x might not have been initialized

        int reply = x + y;

              ^

Until x is assigned a value, it cannot appear within an expression, and the compiler will 
gladly remind you of this rule. The compiler knows your code has control of what happens 
inside the method and can be expected to initialize values.

The compiler is smart enough to recognize variables that have been initialized after their 
declaration but before they are used. Here’s an example:

public int valid() {

  int y = 10;

  int x; // x is declared here

  x = 3; // and initialized here

  int reply = x + y;

  return reply;

}

The compiler is also smart enough to recognize initializations that are more complex. 
In this example, there are two branches of code. answer is initialized in both of them so 
the compiler is perfectly happy. onlyOneBranch is only initialized if check happens to be 
true. The compiler knows there is the possibility for check to be false, resulting in uninitial-
ized code, and gives a compiler error. You’ll learn more about the if statement in the next 
chapter.

public void findAnswer(boolean check) {

  int answer;

  int onlyOneBranch;

  if (check) {

    onlyOneBranch = 1;

    answer = 1;

  } else {

    answer = 2;

  }

  System.out.println(answer);

  System.out.println(onlyOneBranch); // DOES NOT COMPILE

}

Instance and Class Variables
Variables that are not local variables are known as instance variables or class variables. 
Instance variables are also called fi elds. Class variables are shared across multiple objects. 



Understanding Variable Scope 31

c01.indd 1½  4/2014 Page 31

You can tell a variable is a class variable because it has the keyword static before it. You’ll 
learn about this in Chapter 4. For now, just know that a variable is a class variable if it has 
the static keyword in its declaration.

Instance and class variables do not require you to initialize them. As soon as you declare 
these variables, they are given a default value. You’ll need to memorize everything in table 
1.2 except the default value of char. To make this easier, remember that the compiler 
doesn’t know what value to use and so wants the simplest type it can give the value: null 
for an object and 0/false for a primitive.

TA B LE 1. 2   Default initialization values by type

Variable type Default initialization value

boolean false

byte, short, int, long 0 (in the type’s bit-length)

float, double 0.0 (in the type’s bit-length)

char '\u0000' (NUL)

All object references (everything else) null

Understanding Variable Scope

You’ve learned that local variables are declared within a method. How many local variables 
do you see in this example?

public void eat(int piecesOfCheese) {

  int bitesOfCheese = 1;

}

There are two local variables in this method. bitesOfCheese is declared inside the 
method. piecesOfCheese is called a method parameter. It is also local to the method. Both 
of these variables are said to have a scope local to the method. This means they cannot be 
used outside the method.

Local variables can never have a scope larger than the method they are defi ned in. 
However, they can have a smaller scope. Consider this example:

3: public void eatIfHungry(boolean hungry) {

4:  if (hungry) {

5:   int bitesOfCheese = 1;



32 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 32

6:  }  // bitesOfCheese goes out of scope here

7:   System.out.println(bitesOfCheese);// DOES NOT COMPILE

8: }

hungry has a scope of the entire method. bitesOfCheese has a smaller scope. It is only 
available for use in the if statement because it is declared inside of it. When you see a set of 
braces ({ }) in the code, it means you have entered a new block of code. Each block of code 
has its own scope. When there are multiple blocks, you match them from the inside out. 
In our case, the if statement block begins at line 4 and ends at line 6. The method’s block 
begins at line 3 and ends at line 8.

Since bitesOfCheese is declared in such a block, the scope is limited to that block. When 
the compiler gets to line 7, it complains that it doesn’t know anything about this bitesOf-
Cheese thing and gives an error:

bitesOfCheese cannot be resolved to a variable

Remember that blocks can contain other blocks. These smaller contained blocks can ref-
erence variables defi ned in the larger scoped blocks, but not vice versa. For example:

16: public void eatIfHungry(boolean hungry) {

17:   if (hungry) {

18:     int bitesOfCheese = 1;

19:     { 

20:        boolean teenyBit = true; 

21:        System.out.println(bitesOfCheese); 

22:     }

23:   }

24:   System.out.println(teenyBit);  // DOES NOT COMPILE

25: }

The variable defi ned on line 18 is in scope until the block ends on line 23. Using it in the 
smaller block from lines 19 to 22 is fi ne. The variable defi ned on line 20 goes out of scope 
on line 22. Using it on line 24 is not allowed.

The exam may attempt to trick you with questions on scope. You’ll probably see a ques-
tion that appears to be about something complex and fails to compile because one of the 
variables is out of scope. Let’s try one. Don’t worry if you aren’t familiar with if state-
ments or while loops yet. It doesn’t matter what the code does since we are talking about 
scope. See if you can fi gure out on which line each of the fi ve local variables goes into and 
out of scope:

11: public void eatMore(boolean hungry, int amountOfFood) {

12:  int roomInBelly = 5;

13:  if (hungry) {

14:    boolean timeToEat = true;

15:    while (amountOfFood > 0) { 

16:      int amountEaten = 2;



Understanding Variable Scope 33

c01.indd 1½  4/2014 Page 33

17:      roomInBelly = roomInBelly - amountEaten;

18:      amountOfFood = amountOfFood - amountEaten;

19:    }

20:  }

21:  System.out.println(amountOfFood);

22: }

The fi rst step in fi guring out the scope is to identify the blocks of code. In this case, there 
are three blocks. You can tell this because there are three sets of braces. Starting from the 
innermost set, we can see where the while loop’s block starts and ends. Repeat this as we 
go out for the if statement block and method block. Table 1.3 shows the line numbers that 
each block starts and ends on. 

TA B LE 1. 3   Blocks for scope

Line First line in block Last line in block

while 15 19

if 13 20

Method 11 22

You’ll want to practice this skill a lot. Identifying blocks needs to be second nature for 
the exam. The good news is that there are lots of code examples to practice on. You can 
look at any code example in this book on any topic and match up braces.

Now that we know where the blocks are, we can look at the scope of each variable. 
hungry and amountOfFood are method parameters, so they are available for the entire 
method. This means their scope is lines 11 to 22. roomInBelly goes into scope on line 12 
because that is where it is declared. It stays in scope for the rest of the method and so goes 
out of scope on line 22. timeToEat goes into scope on line 14 where it is declared. It goes 
out of scope on line 20 where the if block ends. amountEaten goes into scope on line 16 
where it is declared. It goes out of scope on line 19 where the while block ends. 

All that was for local variables. Luckily the rule for instance variables is easier: they are 
available as soon as they are defi ned and last for the entire lifetime of the object itself. The 
rule for class (static) variables is even easier: they go into scope when declared like the other 
variables types. However, they stay in scope for the entire life of the program.

Let’s do one more example to make sure you have a handle on this. Again, try to fi gure 
out the type of the four variables and when they go into and out of scope.

1:  public class Mouse {

2:    static int MAX_LENGTH = 5;

3:    int length;



34 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 34

4:    public void grow(int inches) {

5:      if (length < MAX_LENGTH) {

6:        int newSize = length + inches;

7:        length = newSize;

8:      }

9:     }

10: }

In this class, we have one class variable (MAX_LENGTH), one instance variable (length), 
and two local variables (inches and newSize.) MAX_LENGTH is a class variable because it has 
the static keyword in its declaration. MAX_LENGTH goes into scope on line 2 where it is 
declared. It stays in scope until the program ends. length goes into scope on line 3 where 
it is declared. It stays in scope as long as this Mouse object exists. inches goes into scope 
where it is declared on line 4. It goes out of scope at the end of the method on line 9. 
newSize goes into scope where it is declared on line 6. Since it is defi ned inside the if state-
ment block, it goes out of scope when that block ends on line 8.

Got all that? Let’s review the rules on scope:

 ■ Local variables—in scope from declaration to end of block

 ■ Instance variables—in scope from declaration until object garbage collected

 ■ Class variables—in scope from declaration until program ends

Ordering Elements in a Class

Now that you’ve seen the most common parts of a class, let’s take a look at the correct 
order to type them into a fi le. Comments can go anywhere in the code. Beyond that, you 
need to memorize the rules in Table 1.4. 

TA B LE 1. 4   Elements of a class

Element Example Required? Where does it go?

Package declaration package abc; No First line in the file

Import statements import java.util.*; No Immediately after the package

Class declaration public class C Yes Immediately after the import

Field declarations int value; No Anywhere inside a class

Method declarations void method() No Anywhere inside a class



Ordering Elements in a Class 35

c01.indd 1½  4/2014 Page 35

Let’s look at a few examples to help you remember this. The fi rst example contains one 
of each element:

package structure;   // package must be first non-comment

import java.util.*;  // import must come after package

public class Meerkat { // then comes the class

  double weight;       // fields and methods can go in either order

  public double getWeight() {

    return weight; }

  double height;   //  another field – they don't need to be together

 }

So far so good. This is a common pattern that you should be familiar with. How about 
this one?

/* header */

package structure;   

// class Meerkat

public class Meerkat { }

Still good. We can put comments anywhere, and imports are optional. In the next 
example, we have a problem:

import java.util.*;  

package structure;   // DOES NOT COMPILE

String name;  // DOES NOT COMPILE

public class Meerkat { }

There are two problems here. One is that the package and import statements are 
reversed. Though both are optional, package must come before import if present. The 
other issue is that a fi eld attempts declaration outside a class. This is not allowed. Fields 
and methods must be within a class.

Got all that? Think of the acronym PIC (picture): package, import, and class. Fields and 
methods are easier to remember because they merely have to be inside of a class.

You need to know one more thing about class structure for the OCA exam: multiple 
classes can be defi ned in the same fi le, but only one of them is allowed to be public. The 
public class matches the name of the fi le. For example, these two classes must be in a fi le 
named Meerkat.java:

1: public class Meerkat { }

2: class Paw { }

A fi le is also allowed to have neither class be public. As long as there isn’t more than 
one public class in a fi le, it is okay. On the OCP exam, you’ll also need to understand inner 
classes, which are classes within a class. 



36 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 36

Destroying Objects

Now that we’ve played with our objects, it is time to put them away. Luckily, Java auto-
matically takes care of that for you. Java provides a garbage collector to automatically look 
for objects that aren’t needed anymore.

All Java objects are stored in your program memory’s heap. The heap, which is also 
referred to as the free store, represents a large pool of unused memory allocated to your 
Java application. The heap may be quite large, depending on your environment, but there is 
always a limit to its size. If your program keeps instantiating objects and leaving them on 
the heap, eventually it will run out of memory. 

In the following sections, we’ll look at garbage collection and the finalize() method.

Garbage Collection
Garbage collection refers to the process of automatically freeing memory on the heap by 
deleting objects that are no longer reachable in your program. There are many different 
algorithms for garbage collection, but you don’t need to know any of them for the exam. 
You do need to know that System.gc() is not guaranteed to run, and you should be able to 
recognize when objects become eligible for garbage collection.

Let’s start with the fi rst one. Java provides a method called System.gc(). Now you 
might think from the name that this tells Java to run garbage collection. Nope! It meekly 
suggests that now might be a good time for Java to kick off a garbage collection run. Java is 
free to ignore the request.

The more interesting part of garbage collection is when the memory belonging to an 
object can be reclaimed. Java waits patiently until the code no longer needs that memory. 
An object will remain on the heap until it is no longer reachable. An object is no longer 
reachable when one of two situations occurs: 

 ■ The object no longer has any references pointing to it. 

 ■ All references to the object have gone out of scope. 

Objects vs. References

Do not confuse a reference with the object that it refers to; they are two different enti-

ties. The reference is a variable that has a name and can be used to access the contents 

of an object. A reference can be assigned to another reference, passed to a method, or 

returned from a method. All references are the same size, no matter what their type is.  

An object sits on the heap and does not have a name. Therefore, you have no way to 

access an object except through a reference. Objects come in all different shapes and 

sizes and consume varying amounts of memory. An object cannot be assigned to another 



Destroying Objects 37

c01.indd 1½  4/2014 Page 37

object, nor can an object be passed to a method or returned from a method. It is the 

object that gets garbage collected, not its reference. 

name

A Reference

A reference may or may
not be created on the heap.
All references are the same
size, no matter what their
data type is, and are accessed
by their variable name. Objects are always on the heap.

They have no name and can only be
accessed via a reference. Objects vary in
size depending on their class definition.

The Heap

An Object

Realizing the difference between a reference and an object goes a long way toward 
understanding garbage collection, the new operator, and many other facets of the Java 
language. Look at this code and see if you can fi gure out when each object fi rst becomes 
eligible for garbage collection:

1: public class Scope {

2:  public static void main(String[] args) {

3:    String one, two;

4:    one = new String("a");

5:    two = new String("b");

6:    one = two;

7:    String three = one;

8:    one = null;

9:  } }

When you get asked a question about garbage collection on the exam, we recommend 
you draw what’s going on. There’s a lot to keep track of in your head and it’s easy to make 
a silly mistake trying to keep it all in your memory. Let’s try it together now. Really. Get a 
pencil and paper. We’ll wait.

Got that paper? Okay, let’s get started. On line 3, we write one and two. Just the words. 
No need for boxes or arrows yet since no objects have gone on the heap yet. On line 4, 
we have our fi rst object. Draw a box with the string "a" in it and draw an arrow from the 
word one to that box. Line 5 is similar. Draw another box with the string "b" in it this time 
and an arrow from the word two. At this point, your work should look like Figure 1.2.



38 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 38

F I GU R E 1. 2   Your drawing after line 5

"a"

two

one

"b"

On line 6, the variable one changes to point to "b". Either erase or cross out the arrow 
from one and draw a new arrow from one to "b". On line 7, we have a new variable, so 
write the word three and draw an arrow from three to "b". Notice that three points to 
what one is pointing to right now and not what it was pointing to at the beginning. This 
is why we are drawing pictures. It’s easy to forget something like that. At this point, your 
work should look like Figure 1.3.

F I GU R E 1. 3   Your drawing after line 7

"a"

two

three

one

"b"

Finally, cross out the line between one and "b" since line 8 sets this variable to null. 
Now, we were trying to fi nd out when the objects were fi rst eligible for garbage collection. 
On line 6, we got rid of the only arrow pointing to "a", making that object eligible for 
garbage collection. "b" has arrows pointing to it until it goes out of scope. This means "b" 
doesn’t go out of scope until the end of the method on line 9.

finalize()
Java allows objects to implement a method called finalize() that might get called. This 
method gets called if the garbage collector tries to collect the object. If the garbage collector 
doesn’t run, the method doesn’t get called. If the garbage collector fails to collect the object 
and tries to run it again later, the method doesn’t get called a second time.

In practice, this means you are highly unlikely to use it in real projects. Luckily, there 
isn’t much to remember about finalize() for the exam. Just keep in mind that it might not 
get called and that it defi nitely won’t be called twice.

With that said, this call produces no output when we run it:

public class Finalizer {

  protected void finalize()  {



Benefits of Java 39

c01.indd 1½  4/2014 Page 39

    System.out.println("Calling finalize");

  } 

  public static void main(String[] args) {

    Finalizer f = new Finalizer();

  } }

The reason is that the program exits before there is any need to run the garbage collec-
tor. While f is eligible for garbage collection, Java has better things to do than take out the 
trash constantly. For the exam, you need to know that this finalize() call could run zero 
or one time. Now for a more interesting example:

public class Finalizer {

  private static List objects = new ArrayList();

  protected void finalize()  {

    objects.add(this);  // Don't do this

  } }

Remember, finalize() is only run when the object is eligible for garbage collection. The 
problem here is that by the end of the method, the object is no longer eligible for garbage 
collection because a static variable is referring to it and static variables stay in scope until 
the program ends. Java is smart enough to realize this and aborts the attempt to throw out 
the object. Now suppose later in the program objects is set to null. Oh, good, we can 
fi nally remove the object from memory. Java remembers already running finalize() on 
this object and will not do so again. The lesson is that the finalize() call could run zero 
or one time. This is the exact same lesson as the simple example—that’s why it’s so easy to 
remember. 

Benefits of Java

Java has some key benefi ts that you’ll need to k now for the exam:

Object Oriented  Java is an object-oriented language, which means all code is defi ned in 
classes and most of those classes can be instantiated into objects. We’ll discuss this more 
throughout the book. Many languages before Java were procedural, which meant there were 
routines or methods but no classes. Another common approach is functional programming. 
Java allows for functional programming within a class, but object oriented is still the main 
organization of code.

Encapsulation  Java supports access modifi ers to protect data from unintended access 
and modifi cation. Most people consider encapsulation to be an aspect of object-oriented 
languages. Since the exam objectives call attention to it specifi cally, so do we.

Platform Independent  Java is an interpreted language because it gets compiled to 
bytecode. A key benefi t is that Java code gets compiled once rather than needing to be 



40 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 40

recompiled for different operating systems. This is known as “write once, run everywhere.” 
On the OCP exam, you’ll learn that it is possible to write code that does not run every-
where. For example, you might refer to a fi le in a specifi c directory. If you get asked on the 
OCA exam, the answer is that the same class fi les run everywhere.

Robust  One of the major advantages of Java over C++ is that it prevents memory leaks. 
Java manages memory on its own and does garbage collection automatically. Bad memory 
management in C++ is a big source of errors in programs.

Simple  Java was intended to be simpler than C++. In addition to eliminating pointers, 
it got rid of operator overloading. In C++, you could write a + b and have it mean almost 
anything.

Secure  Java code runs inside the JVM. This creates a sandbox that makes it hard for Java 
code to do evil things to the computer it is running on.

Summary

In this chapter, you saw that Java classes consist of members called fi elds and methods. An 
object is an instance of a Java class. There are three styles of comment: a single-line com-
ment (//), a multiline comment (/* */), and a Javadoc comment (/** */).

Java begins program execution with a main() method. The most common signature for 
this method run from the command line is public static void main(String[] args). 
Arguments are passed in after the class name, as in java NameOfClass firstArgument. 
Arguments are indexed starting with 0.

Java code is organized into folders called packages. To reference classes in other pack-
ages, you use an import statement. A wildcard ending an import statement means you want 
to import all classes in that package. It does not include packages that are inside that one. 
java.lang is a special package that does not need to be imported. 

Constructors create Java objects. A constructor is a method matching the class name and 
omitting the return type. When an object is instantiated, fi elds and blocks of code are 
initialized fi rst. Then the constructor is run.

Primitive types are the basic building blocks of Java types. They are assembled into 
reference types. Reference types can have methods and be assigned to null. In addition to 
“normal” numbers, numeric literals are allowed to begin with 0 (octal), 0x (hex), 0X (hex), 
0b (binary), or 0B (binary). Numeric literals are also allowed to contain underscores as long 
as they are directly between two other numbers.

Declaring a variable involves stating the data type and giving the variable a name. 
Variables that represent fi elds in a class are automatically initialized to their correspond-
ing “zero” or null value during object instantiation. Local variables must be specifi cally 
initialized. Identifi ers may contain letters, numbers, $, or _. Identifi ers may not begin with 
numbers.

Scope refers to that portion of code where a variable can be accessed. There are three 
kinds of variables in Java, depending on their scope: instance variables, class variables, and 



Exam Essentials 41

c01.indd 1½  4/2014 Page 41

local variables. Instance variables are the nonstatic fi elds of your class. Class variables are 
the static fi elds within a class. Local variables are declared within a method. 

For some class elements, order matters within the fi le. The package statement comes fi rst 
if present. Then comes the import statements if present. Then comes the class declaration. 
Fields and methods are allowed to be in any order within the class.

Garbage collection is responsible for removing objects from memory when they can 
never be used again. An object becomes eligible for garbage collection when there are no 
more references to it or its references have all gone out of scope. The finalize() method 
will run once for each object if/when it is fi rst garbage collected.

Java code is object oriented, meaning all code is defi ned in classes. Access modifi ers 
allow classes to encapsulate data. Java is platform independent, compiling to bytecode. It is 
robust and simple by not providing pointers or operator overloading. Finally, Java is secure 
because it runs inside a virtual machine.

Exam Essentials

Be able to write code using a main() method.  A main() method is usually written as public 
static void main(String[] args). Arguments are referenced starting with args[0]. Accessing 
an argument that wasn’t passed in will cause the code to throw an exception.

Understand the effect of using packages and imports.  Packages contain Java classes. 
Classes can be imported by class name or wildcard. Wildcards do not look at subdirecto-
ries. In the event of a confl ict, class name imports take precedence.

Be able to recognize a constructor.  A constructor has the same name as the class. It looks 
like a method without a return type.

Be able to identify legal and illegal declarations and initialization.  Multiple variables can 
be declared and initialized in the same statement when they share a type. Local variables 
require an explicit initialization; others use the default value for that type. Identifi ers may 
contain letters, numbers, $, or _. Identifi ers may not begin with numbers. Numeric literals 
may contain underscores between two digits and begin with 1–9, 0, 0x, 0X, 0b, and 0B.

Be able to determine where variables go into and out of scope.  All variables go into scope 
when they are declared. Local variables go out of scope when the block they are declared 
in ends. Instance variables go out of scope when the object is garbage collected. Class vari-
ables remain in scope as long as the program is running.

Be able to recognize misplaced statements in a class.  Package and import statements are 
optional. If present, both go before the class declaration in that order. Fields and methods 
are also optional and are allowed in any order within the class declaration. 

Know how to identify when an object is eligible for garbage collection.  Draw a diagram 
to keep track of references and objects as you trace the code. When no arrows point to a 
box (object), it is eligible for garbage collection.



42 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 42

Review Questions

1. Which of the following are valid Java identifiers? (Choose all that apply)

A. A$B

B. _helloWorld

C. true

D. java.lang

E. Public

F. 1980_s

2. What is the output of the following program?

1: public class WaterBottle {

2: private String brand;

3: private boolean empty;

4: public static void main(String[] args) {

5:   WaterBottle wb = new WaterBottle();

6:   System.out.print("Empty = " + wb.empty);

7:   System.out.print(", Brand = " + wb.brand);

8:  } } 

A. Line 6 generates a compiler error. 

B. Line 7 generates a compiler error. 

C. There is no output.

D. Empty = false, Brand = null

E. Empty = false, Brand = 

F. Empty = null, Brand = null

3. Which of the following are true? (Choose all that apply)
4: short numPets = 5;

5: int numGrains = 5.6;

6: String name = "Scruffy";

7: numPets.length();

8: numGrains.length();

9: name.length();

A. Line 4 generates a compiler error.

B. Line 5 generates a compiler error.

C. Line 6 generates a compiler error.

D. Line 7 generates a compiler error.

E. Line 8 generates a compiler error.



Review Questions 43

c01.indd 1½  4/2014 Page 43

F. Line 9 generates a compiler error.

G. The code compiles as is.

4. Given the following class, which of the following is true? (Choose all that apply)
 1: public class Snake {

 2:  

 3:  public void shed(boolean time) {

 4:

 5:    if (time) {

 6:

 7:    }

 8:    System.out.println(result);

 9:

10:  }

11: }

A. If String result = "done"; is inserted on line 2, the code will compile.

B. If String result = "done"; is inserted on line 4, the code will compile.

C. If String result = "done"; is inserted on line 6, the code will compile.

D. If String result = "done"; is inserted on line 9, the code will compile.

E. None of the above changes will make the code compile.

5. Given the following classes, which of the following can independently replace INSERT 
IMPORTS HERE to make the code compile? (Choose all that apply)

package aquarium;

public class Tank { }

package aquarium.jellies;

public class Jelly { }

package visitor;

INSERT IMPORTS HERE

public class AquariumVisitor {

  public void admire(Jelly jelly) { } }

A. import aquarium.*;

B. import aquarium.*.Jelly;

C. import aquarium.jellies.Jelly;

D. import aquarium.jellies.*;

E. import aquarium.jellies.Jelly.*;

F. None of these can make the code compile.



44 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 44

6. Given the following classes, what is the maximum number of imports that can be removed 
and have the code still compile?
package aquarium; public class Water { }

package aquarium;

import java.lang.*;

import java.lang.System;

import aquarium.Water;

import aquarium.*;

public class Tank {

  public void print(Water water) {

   System.out.println(water); } }

A. 0

B. 1

C. 2

D. 3

E. 4

F. Does not compile.

7. Given the following classes, which of the following snippets can be inserted in place of 
INSERT IMPORTS HERE and have the code compile? (Choose all that apply)
package aquarium;

public class Water {

  boolean salty = false;

}

package aquarium.jellies;

public class Water {

  boolean salty = true;

}

package employee;

 INSERT IMPORTS HERE

public class WaterFiller {

  Water water;

}

A. import aquarium.*;

B. import aquarium.Water;

import aquarium.jellies.*;

C. import aquarium.*;

import aquarium.jellies.Water;



Review Questions 45

c01.indd 1½  4/2014 Page 45

D. import aquarium.*;

import aquarium.jellies.*;

E. import aquarium.Water;

import aquarium.jellies.Water;

F. None of these imports can make the code compile.

8. Given the following class, which of the following calls print out Blue Jay? (Choose all that 
apply)
public class BirdDisplay {

  public static void main(String[] name) {             
    System.out.println(name[1]);

} }

A. java BirdDisplay Sparrow Blue Jay

B. java BirdDisplay Sparrow "Blue Jay"

C. java BirdDisplay Blue Jay Sparrow

D. java BirdDisplay "Blue Jay" Sparrow

E. java BirdDisplay.class Sparrow "Blue Jay"

F. java BirdDisplay.class "Blue Jay" Sparrow

G. Does not compile.

9. Which of the following legally fill in the blank so you can run the main() method from the 
command line? (Choose all that apply)
public static void main( ) 

A. String[] _names

B. String[] 123

C. String abc[]

D. String _Names[]

E. String... $n

F. String names

G. None of the above.

10. Which of the following are legal entry point methods that can be run from the command 
line? (Choose all that apply)

A. private static void main(String[] args) 

B. public static final main(String[] args) 

C. public void main(String[] args) 

D. public static void test(String[] args) 

E. public static void main(String[] args) 

F. public static main(String[] args) 

G. None of the above.



46 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 46

11. Which of the following are true? (Choose all that apply)

A. An instance variable of type double defaults to null.

B. An instance variable of type int defaults to null.

C. An instance variable of type String defaults to null.

D. An instance variable of type double defaults to 0.0.

E. An instance variable of type int defaults to 0.0.

F. An instance variable of type String defaults to 0.0.

G. None of the above.

12. Which of the following are true? (Choose all that apply)

A. A local variable of type boolean defaults to null.

B. A local variable of type float defaults to 0.

C. A local variable of type Object defaults to null.

D. A local variable of type boolean defaults to false.

E. A local variable of type boolean defaults to true.

F. A local variable of type float defaults to 0.0.

G. None of the above.

13. Which of the following are true? (Choose all that apply)

A. An instance variable of type boolean defaults to false.

B. An instance variable of type boolean defaults to true.

C. An instance variable of type boolean defaults to null.

D. An instance variable of type int defaults to 0.

E. An instance variable of type int defaults to 0.0.

F. An instance variable of type int defaults to null.

G. None of the above.

14. Given the following class in the file /my/directory/named/A/Bird.java:
INSERT CODE HERE

public class Bird { }

 Which of the following replaces INSERT CODE HERE if we compile from /my/directory? 
(Choose all that apply)

A. package my.directory.named.a;

B. package my.directory.named.A;

C. package named.a;

D. package named.A;

E. package a;

F. package A;

G. Does not compile.



Review Questions 47

c01.indd 1½  4/2014 Page 47

15. Which of the following lines of code compile? (Choose all that apply)

A. int i1 = 1_234;

B. double d1 = 1_234_.0;

C. double d2 = 1_234._0;

D. double d3 = 1_234.0_;

E. double d4 = 1_234.0;

F. None of the above.

16. Given the following class, which of the following lines of code can replace INSERT CODE 
HERE to make the code compile? (Choose all that apply)
public class Price {

      public void admission() {

                INSERT CODE HERE

             System.out.println(amount);

      } }

A. int amount = 9L;

B. int amount = 0b101;

C. int amount = 0xE;

D. double amount = 0xE;

E. double amount = 1_2_.0_0;

F. int amount = 1_2_;

G. None of the above.

17. Which of the following are true? (Choose all that apply)
public class Bunny {

       public static void main(String[] args) {

            Bunny bun = new Bunny();

} }

A. Bunny is a class.

B. bun is a class.

C. main is a class.

D. Bunny is a reference to an object.

E. bun is a reference to an object.

F. main is a reference to an object.

G. None of the above.

18. Which represent the order in which the following statements can be assembled into a pro-
gram that will compile successfully? (Choose all that apply)
A: class Rabbit {} 

B: import java.util.*; 

C: package animals;



48 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 48

A. A, B, C

B. B, C, A

C. C, B, A

D. B, A

E. C, A

F. A, C

G. A, B

19. Suppose we have a class named Rabbit. Which of the following statements are true? 
(Choose all that apply)
1:  public class Rabbit {

2:   public static void main(String[] args) {

3:    Rabbit one = new Rabbit();

4:    Rabbit two = new Rabbit();

5:    Rabbit three = one;

6:    one = null;

7:    Rabbit four = one;

8:    three = null;

9:    two = null;

10:   two = new Rabbit();

11:   System.gc();

12: } }

A. The Rabbit object from line 3 is first eligible for garbage collection immediately 
following line 6.

B. The Rabbit object from line 3 is first eligible for garbage collection immediately 
following line 8.

C. The Rabbit object from line 3 is first eligible for garbage collection immediately 
following line 12.

D. The Rabbit object from line 4 is first eligible for garbage collection immediately 
following line 9.

E. The Rabbit object from line 4 is first eligible for garbage collection immediately 
following line 11.

F. The Rabbit object from line 4 is first eligible for garbage collection immediately 
following line 12.

20. What is true about the following code? (Choose all that apply)
public class Bear {

  protected void finalize() {

    System.out.println("Roar!");

}



Review Questions 49

c01.indd 1½  4/2014 Page 49

public static void main(String[] args) {

  Bear bear = new Bear();

  bear = null;

  System.gc();

} }

A. finalize() is guaranteed to be called.

B. finalize() might or might not be called

C. finalize() is guaranteed not to be called.

D. Garbage collection is guaranteed to run.

E. Garbage collection might or might not run.

F. Garbage collection is guaranteed not to run.

G. The code does not compile.

21. What does the following code output?
1: public class Salmon {

2:  int count;

3:  public void Salmon() {

4:    count = 4;

5:  }

6: public static void main(String[] args) {

7:  Salmon s = new Salmon();

8:  System.out.println(s.count);

9: } }

A. 0

B. 4

C. Compilation fails on line 3.

D. Compilation fails on line 4.

E. Compilation fails on line 7.

F. Compilation fails on line 8.

22. Which of the following are true statements? (Choose all that apply)

A. Java allows operator overloading.

B. Java code compiled on Windows can run on Linux.

C. Java has pointers to specific locations in memory.

D. Java is a procedural language.

E. Java is an object-oriented language.

F. Java is a functional programming language.



50 Chapter 1 ■ Java Building Blocks

c01.indd 1½  4/2014 Page 50

23. Which of the following are true? (Choose all that apply)

A. javac compiles a .class file into a .java file.

B. javac compiles a .java file into a .bytecode file.

C. javac compiles a .java file into a .class file.

D. Java takes the name of the class as a parameter.

E. Java takes the name of the .bytecode file as a parameter.

F. Java takes the name of the .class  file as a parameter. 



c02.indd 1½  5/2014 Page 51

Chapter 

2
Operators and 
Statements

OCA EXAM OBJECTIVES COVERED IN THIS 
CHAPTER:

 ✓ Using Operators and Decision Constructs

 ■ Use Java operators; including parentheses to override opera-

tor precedence

 ■ Create if and if/else and ternary constructs

 ■ Use a switch statement

 ✓ Using Loop Constructs

 ■ Create and use while loops

 ■ Create and use for loops including the enhanced for loop

 ■ Create and use do/while loops

 ■ Compare loop constructs

 ■ Use break and continue 



c02.indd 1½  5/2014 Page 52

Like many programming languages, Java is composed primar-
ily of variables, operators, and statements put together in some 
logical order. In the previous chapter, we discussed variables 

and gave some examples; in this chapter we’ll discuss the various operators and statements 
available to you within the language. This knowledge will allow you to build complex func-
tions and class structures that you’ll see in later chapters.

Understanding Java Operators

A Java operator is a special symbol that can be applied to a set of variables, values, or 
literals—referred to as operands—and that returns a result. Three fl avors of operators are 
available in Java: unary, binary, and ternary. These types of operators can be applied to 
one, two, or three operands, respectively. For the OCA exam, you’ll need know a specifi c 
subset of Java operators, how to apply them, and the order in which they should be applied.

Java operators are not necessarily evaluated from left-to-right order. For example, the 
following Java expression is actually evaluated from right-to-left given the specifi c opera-
tors involved:

int y = 4;

double x = 3 + 2 * --y;

In this example, you would fi rst decrement y to 3, and then multiply the resulting value 
by 2, and fi nally add 3. The value would then be automatically upcast from 9 to 9.0 and 
assigned to x. The fi nal values of x and y would be 9.0 and 3, respectively. If you didn’t 
follow that evaluation, don’t worry. By the end of this chapter, solving problems like this 
should be second nature.

Unless overridden with parentheses, Java operators follow order of operation, listed in 
Table 2.1, by decreasing order of operator precedence. If two operators have the same level 
of precedence, then Java guarantees left-to-right evaluation. You need to know only those 
operators in bold for the OCA exam.

TA B LE 2 .1   Order of operator precedence

Operator Symbols and examples

Post-unary operators expression++, expression--

Pre-unary operators ++expression, --expression



Working with Binary Arithmetic Operators 53

c02.indd 1½  5/2014 Page 53

Operator Symbols and examples

Other unary operators +, -, !

Multiplication/Division/Modulus *, /, %

Addition/Subtraction +, -

Shift operators <<, >>, >>>

Relational operators <, >, <=, >=, instanceof

Equal to/not equal to ==, !=

Logical operators &, ^, |

Short-circuit logical operators &&, ||

Ternary operators boolean expression ? expression1 : expres-
sion2

Assignment operators =, +=, -=, *=, /=, %=, &=, ^=, !=, <<=, >>=, >>>=

We’ll spend the fi rst half of this chapter discussing many of the operators in this list as 
well as how operator precedence determines which operators should be applied fi rst. Note 
that you won’t be tested on some operators, although we recommend that you be aware of 
their existence.

Working with Binary Arithmetic 
Operators

We’ll begin our discussion with binary operators, by far the most common operators in 
the Java language. They can be used to perform mathematical operations on variables, 
create logical expressions, as well as perform basic variable assignments. Binary operators 
are commonly combined in complex expressions with more than two variables; therefore, 
operator precedence is very important in evaluating expressions.

Arithmetic Operators
Arithmetic operators are often encountered in early mathematics and include addition 
(+), subtraction (-), multiplication (*), division (/), and modulus (%). They also include the 
unary operators, ++ and --, although we cover them later in this chapter. As you may have 



54 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 54

noticed in Table 2.1, the multiplicative operators (*, /, %) have a higher order of precedence 
than the additive operators (+, -). That means when you see an expression such as this:

int x = 2 * 5 + 3 * 4 - 8;

you fi rst evaluate the 2 * 5 and 3 * 4, which reduces the expression to the following:

int x = 10 + 12 - 8;

Then, you evaluate the remaining terms in left-to-right order, resulting in a value of x of 
14. Make sure you understand why the result is 24 as you’ll likely see this kind of operator 
precedence question on the exam.

Notice that we said “Unless overridden with parentheses…” prior to Table 2.1. That’s 
because you can change the order of operation explicitly by wrapping parentheses around 
the sections you want evaluated fi rst. Compare the previous example with the following 
one containing the same values and operators, in the same order, but with two sets of 
parentheses:

int x = 2 * ((5 + 3) * 4 – 8);

This time you would evaluate the addition operator 10 + 3, which reduces the expres-
sion to the following:

int x = 2 * (8 * 4 – 8);

You can further reduce this expression by multiplying the fi rst two values within the 
parentheses:

int x = 2 * (32 – 8);

Next, you subtract the values within the parentheses before applying terms outside the 
parentheses:

int x = 2 * 24;

Finally, you would multiply the result by 2, resulting in a value of 48 for x.
All of the arithmetic operators may be applied to any Java primitives, except boolean 

and String. Furthermore, only the addition operators + and += may be applied to String 
values, which results in String concatenation.

Although we are sure you have seen most of the arithmetic operators before, the modu-
lus operator, %, may be new to you. The modulus, or remainder operator, is simply the 
remainder when two numbers are divided. For example, 9 divided by 3 divides evenly and 
has no remainder; therefore, the remainder, or 9 % 3, is 0. On the other hand, 11 divided 
by 3 does not divide evenly; therefore, the remainder, or 11 % 3, is 2.

Be sure to understand the difference between arithmetic division and modulus. For inte-
ger values, division results in the fl oor value of the nearest integer that fulfi lls the operation, 
whereas modulus is the remainder value. The following examples illustrate this distinction:

System.out.print(9 / 3);  // Outputs 3

System.out.print(9 % 3);  // Outputs 0



Working with Binary Arithmetic Operators 55

c02.indd 1½  5/2014 Page 55

System.out.print(10 / 3);  // Outputs 3

System.out.print(10 % 3);  // Outputs 1

System.out.print(11 / 3);  // Outputs 3

System.out.print(11 % 3);  // Outputs 2

System.out.print(12 / 3);  // Outputs 4

System.out.print(12 % 3);  // Outputs 0

Note that the division results only increase when the value on the left-hand side goes 
from 9 to 12, whereas the modulus remainder value increases by 1 each time the left-hand 
side is increased until it wraps around to zero. For a given divisor y, which is 3 in these 
examples, the modulus operation results in a value between 0 and (y - 1) for positive divi-
dends. This means that the result of a modulus operation is always 0, 1, or 2. 

The modulus operation is not limited to positive integer values in Java 
and may also be applied to negative integers and floating-point integers. 
For a given divisor y and negative dividend, the resulting modulus value 
is between and (-y + 1) and 0. For the OCA exam, though, you are not 
required to be able to take the modulus of a negative integer or a floating-
point number.

Numeric Promotion
Now that you understand the basics of arithmetic operators, it is vital we talk about primi-
tive numeric promotion, as Java may do things that seem unusual to you at fi rst. If you 
recall in Chapter 1, “Java Building Blocks,” where we listed the primitive numeric types, 
each primitive has a bit-length. You don’t need to know the exact size of these types for the 
exam, but you should know which are bigger than others. For example, you should know 
that a long takes up more space than an int, which in turn takes up more space than a 
short, and so on.

You should memorize certain rules Java will follow when applying operators to data 
types:

Numeric Promotion Rules

1. If two values have different data types, Java will automatically promote one of the val-
ues to the larger of the two data types.

2. If one of the values is integral and the other is floating-point, Java will automatically 
promote the integral value to the floating-point value’s data type.



56 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 56

3. Smaller data types, namely byte, short, and char, are first promoted to int any time 
they’re used with a Java binary arithmetic operator, even if neither of the operands is 
int.

4. After all promotion has occurred and the operands have the same data type, the result-
ing value will have the same data type as its promoted operands.

The last two rules are the ones most people have trouble with, and the ones likely to trip 
you up on the exam. For the third rule, note that unary operators are excluded from this 
rule. For example, applying ++ to a short value results in a short value. We’ll discuss unary 
operators in the next section.

Let’s tackle some examples for illustrative purposes:

 ■ What is the data type of x * y?
int x = 1;

long y = 33;

If we follow the fi rst rule, since one of the values is long and the other is int, and long 
is larger than int, then the int value is promoted to a long, and the resulting value is 
long.

 ■ What is the data type of x + y?

double x = 39.21;

float y = 2.1;

This is actually a trick question, as this code will not compile! As you may remember 
from Chapter 1, fl oating-point literals are assumed to be double, unless postfi xed with 
an f, as in 2.1f. If the value was set properly to 2.1f, then the promotion would be 
similar to the last example, with both operands being promoted to a double, and the 
result would be a double value.

 ■ What is the data type of x / y?

short x = 10;

short y = 3;

In this case, we must apply the third rule, namely that x and y will both be promoted 
to int before the operation, resulting in an output of type int. Pay close attention to 
the fact that the resulting output is not a short, as we’ll come back to this example in 
the upcoming section on assignment operators.

 ■ What is the data type of x * y / z?

short x = 14;

float y = 13;

double z = 30;

In this case, we must apply all of the rules. First, x will automatically be promoted to 
int solely because it is a short and it is being used in an arithmetic binary operation. 



Working with Unary Operators 57

c02.indd 1½  5/2014 Page 57

The promoted x value will then be automatically promoted to a float so that it can be 
multiplied with y. The result of x * y will then be automatically promoted to a double, 
so that it can be multiplied with z, resulting in a double value.

Working with Unary Operators

By defi nition, a unary operator is one that requires exactly one operand, or variable, to 
function. As shown in Table 2.2, they often perform simple tasks, such as increasing a 
numeric variable by one, or negating a boolean value.

TA B LE 2 . 2   Java unary operators

Unary operator Description

+ Indicates a number is positive, although numbers are assumed 
to be positive in Java unless accompanied by a negative unary 
operator

- Indicates a literal number is negative or negates an expression

++ Increments a value by 1

-- Decrements a value by 1

! Inverts a Boolean’s logical value

Logical Complement and Negation Operators
The logical complement operator, !,  fl ips the value of a boolean expression. For example, 
if the value is true, it will be converted to false, and vice versa. To illustrate this, compare 
the outputs of the following statements:

boolean x = false;

System.out.println(x);  // false

x = !x;

System.out.println(x);  // true

Likewise, the negation operator, -, reverses the sign of a numeric expression, as shown 
in these statements:

double x = 1.21;



58 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 58

System.out.println(x);  // 1.21

x = -x;

System.out.println(x);  // -1.21

x = -x;

System.out.println(x);  // 1.21

Based on the description, it might be obvious that some operators require the variable 
or expression they’re acting upon to be of a specifi c type. For example, you cannot apply 
a negation operator, -, to a boolean expression, nor can you apply a logical complement 
operator, !, to a numeric expression. Be wary of questions on the exam that try to do this, 
as they’ll cause the code to fail to compile. For example, none of the following lines of code 
will compile:

int x = !5;  // DOES NOT COMPILE

boolean y = -true;  // DOES NOT COMPILE

boolean z = !0;  // DOES NOT COMPILE

The fi rst statement will not compile due the fact that in Java you cannot perform a 
logical inversion of a numeric value. The second statement does not compile because you 
cannot numerically negate a boolean value; you need to use the logical inverse operator. 
Finally, the last statement does not compile because you cannot take the logical comple-
ment of a numeric value, nor can you assign an integer to a boolean variable.

Keep an eye out for questions on the exam that use the logical complement 
operator or numeric values with boolean expressions or variables. Unlike 
some other programming languages, in Java 1 and true are not related in 
any way, just as 0 and false are not related.

Increment and Decrement Operators
Increment and decrement operators, ++ and --, respectively, can be applied to numeric 
operands and have the higher order or precedence, as compared to binary operators. In 
other words, they often get applied fi rst to an expression.

Increment and decrement operators require special care because the order they are 
applied to their associated operand can make a difference in how an expression is pro-
cessed. If the operator is placed before the operand, referred to as the pre-increment opera-
tor and the pre-decrement operator, then the operator is applied fi rst and the value return 
is the new value of the expression. Alternatively, if the operator is placed after the operand, 
referred to as the post-increment operator and the post-decrement operator, then the origi-
nal value of the expression is returned, with operator applied after the value is returned.



Working with Unary Operators 59

c02.indd 1½  5/2014 Page 59

The following code snippet illustrates this distinction:

int counter = 0;

System.out.println(counter);  // Outputs 0

System.out.println(++counter);  // Outputs 1

System.out.println(counter); // Outputs 1

System.out.println(counter--);  // Outputs 1

System.out.println(counter);  // Outputs 0

The fi rst pre-increment operator updates the value for counter and outputs the new 
value of 1. The next post-decrement operator also updates the value of counter but outputs 
the value before the decrement occurs.

One common practice in a certifi cation exam, albeit less common in the real world, is to 
apply multiple increment or decrement operators to a single variable on the same line:

int x = 3;

int y = ++x * 5 / x-- + --x;

System.out.println("x is " + x);

System.out.println("y is " + y);

This one is more complicated than the previous example because x is modifi ed three 
times on the same line. Each time it is modifi ed, as the expression moves from left to right, 
the value of x changes, with different values being assigned to the variable. As you’ll recall 
from our discussion on operator precedence, order of operation plays an important part in 
evaluating this example.

So how do you read this code? First, the x is incremented and returned to the expression, 
which is multiplied by 5. We can simplify this:

int y = 4 * 5 / x-- + --x;  // x assigned value of 4

Next, x is decremented, but the original value of 4 is used in the expression, leading to 
this:

int y = 4 * 5 / 4 + --x;  // x assigned value of 3

The fi nal assignment of x reduces the value to 2, and since this is a pre-increment opera-
tor, that value is returned to the expression:

int y = 4 * 5 / 4 + 2;  // x assigned value of 2

Finally, we evaluate the multiple and division from left-to-right, and fi nish with the addi-
tion. The result is then printed:

x is 2

y is 7



60 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 60

Using Additional Binary Operators

We’ll now expand our discussion of binary operators to include all other binary operators 
that you’ll need to know for the exam. This includes operators that perform assignments, 
those that compare arithmetic values and return boolean results, and those that compare 
boolean and object values and return boolean results.

Assignment Operators
An assignment operator is a binary operator that modifi es, or assigns, the variable on 
the left-hand side of the operator, with the result of the value on the right-hand side of 
the equation. The simplest assignment operator is the = assignment, which you have seen 
already:

int x = 1;

This statement assigns x the value of 1.
Java will automatically promote from smaller to larger data types, as we saw in the pre-

vious section on arithmetic operators, but it will throw a compiler exception if it detects 
you are trying to convert from larger to smaller data types.

Let’s return to some examples similar to what you saw in Chapter 1 in order to show 
how casting can resolve these issues:

int x = 1.0;  // DOES NOT COMPILE

short y = 1921222;  // DOES NOT COMPILE

int z = 9f;  // DOES NOT COMPILE

long t = 192301398193810323;  // DOES NOT COMPILE

The fi rst statement does not compile because you are trying to assign a double 1.0 to an 
integer value. Even though the value is a mathematic integer, by adding .0, you’re instruct-
ing the compiler to treat it as a double. The second statement does not compile because the 
literal value 1921222 is outside the range of short and the compiler detects this. The third 
statement does not compile because of the f added to the end of the number that instructs 
the compiler to treat the number as fl oating-point value. Finally, the last statement does not 
compile because Java interprets the literal as an int and notices that the value is larger than 
int allows. The literal would need a postfi x L to be considered a long. 

Casting Primitive Values
We can fi x the examples in the previous section by casting the results to a smaller data 
type. Casting primitives is required any time you are going from a larger numerical data 
type to a smaller numerical data type, or converting from a fl oating-point number to an 
integral value.

int x = (int)1.0;

short y = (short)1921222;  // Stored as 20678 



Using Additional Binary Operators 61

c02.indd 1½  5/2014 Page 61

int z = (int)9l;

long t = 192301398193810323L;

Overfl ow and Underfl ow

The expressions in the previous example now compile, although there’s a cost. The sec-

ond value, 1,921,222, is too large to be stored as a short, so numeric overfl ow occurs 

and it becomes 20,678. Overfl ow is when a number is so large that it will no longer fi t 

within the data type, so the system “wraps around” to the next lowest value and counts 

up from there. There’s also an analogous underfl ow, when the number is too low to fi t in 

the data type.

This is beyond the scope of the exam, but something to be careful of in your own code. 

For example, the following statement outputs a negative number:

System.out.print(2147483647+1);  // -2147483648

Since 2147483647 is the maximum int value, adding any strictly positive value to it will 

cause it to wrap to the next negative number.

Let’s return to one of our earlier examples for a moment:

short x = 10;

short y = 3;

short z = x * y;  // DOES NOT COMPILE

Based on everything you have learned up until now, can you understand why the last 
line of this statement will not compile? If you remember, short values are automatically 
promoted to int when applying any arithmetic operator, with the resulting value being of 
type int. Trying to set a short variable to an int results in a compiler error, as Java thinks 
you are trying to implicitly convert from a larger data type to a smaller one.

There are times that you may want to override the default behavior of the compiler. For 
example, in the preceding example, we know the result of 10 * 3 is 30, which can easily 
fi t into a short variable. If you need the result to be a short, though, you can override this 
behavior by casting the result of the multiplication:

short x = 10;

short y = 3;

short z = (short)(x * y);

By performing this explicit cast of a larger value into a smaller data type, you are 
instructing the compiler to ignore its default behavior. In other words, you are telling the 
compiler that you have taken additional steps to prevent overfl ow or underfl ow. It is also 
possible that in your particular application and scenario, overfl ow or underfl ow would 
result in acceptable values.



62 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 62

Compound Assignment Operators
Besides the simple assignment operator, =, there are also numerous compound assignment 
operators. Only two of the compound operators listed in Table 2.1 are required for the 
exam, += and -=. Complex operators are really just glorifi ed forms of the simple assignment 
operator, with a built-in arithmetic or logical operation that applies the left- and right-hand 
sides of the statement and stores the resulting value in a variable in the left-hand side of the 
statement. For example, the following two statements after the declaration of x and z are 
equivalent:

int x = 2, z = 3;

x = x * z;  // Simple assignment operator

x *= z;  // Compound assignment operator

The left-hand side of the compound operator can only be applied to a variable that is 
already defi ned and cannot be used to declare a new variable. In the previous example, if x 
was not already defi ned, then the expression x *= z would not compile.

Compound operators are useful for more than just shorthand—they can also save us 
from having to explicitly cast a value. For example, consider the following example, in 
which the last line will not compile due to the result being promoted to a long and assigned 
to an int variable:

long x = 10;

int y = 5;

y = y * x;  // DOES NOT COMPILE

Based on the last two sections, you should be able to spot the problem in the last line. 
This last line could be fi xed with an explicit cast to (int), but there’s a better way using the 
compound assignment operator:

long x = 10;

int y = 5;

y *= x;

The compound operator will fi rst cast x to a long, apply the multiplication of two long 
values, and then cast the result to an int. Unlike the previous example, in which the com-
piler threw an exception, in this example we see that the compiler will automatically cast 
the resulting value to the data type of the value on the left-hand side of the compound 
operator.

One fi nal thing to know about the assignment operator is that the result of the assign-
ment is an expression in and of itself, equal to the value of the assignment. For example, the 
following snippet of code is perfectly valid, if not a little odd looking:

long x = 5;

long y = (x=3);

System.out.println(x); // Outputs 3

System.out.println(y); // Also, outputs 3



Using Additional Binary Operators 63

c02.indd 1½  5/2014 Page 63

The key here is that (x=3) does two things. First, it sets the value of the variable x to be 
3. Second, it returns a value of the assignment, which is also 3. The exam creators are fond 
of inserting the assignment operator = in the middle of an expression and using the value of 
the assignment as part of a more complex expression.

Relational Operators
We now move on to relational operators, which compare two expressions and return a 
boolean value. The fi rst four relational operators (see Table 2.3) are applied to numeric 
primitive data types only. If the two numeric operands are not of the same data type, the 
smaller one is promoted in the manner as previously discussed.

TA B LE 2 . 3   Relational operators

< Strictly less than

<= Less than or equal to

> Strictly greater than

>= Greater than or equal to

Let’s look at examples of these operators in action:

int x = 10, y = 20, z = 10;

System.out.println(x < y);  // Outputs true

System.out.println(x <= y);  // Outputs true

System.out.println(x >= z);  // Outputs true

System.out.println(x > z);  // Outputs false

Notice that the last example outputs false, because although x and z are the same 
value, x is not strictly greater than z.

The fi fth relational operator (Table 2.4) is applied to object references and classes or 
interfaces.

TA B LE 2 . 4   Relational instanceof operator

a instanceof b True if the reference that a points to is an instance of 
a class, subclass, or class that implements a particular 
interface, as named in b

The instanceof operator, while useful for determining whether an arbitrary object is a 
member of a particular class or interface, is out of scope for the OCA exam.



64 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 64

Logical Operators
If you have studied computer science, you may have already come across logical operators 
before. If not, no need to panic—we’ll be covering them in detail in this section.

The logical operators, (&), (|), and (̂ ), may be applied to both numeric and boolean data 
types. When they’re applied to boolean data types, they’re referred to as logical operators. 
Alternatively, when they’re applied to numeric data types, they’re referred to as bitwise 
operators, as they perform bitwise comparisons of the bits that compose the number. For 
the exam, though, you don’t need to know anything about numeric bitwise comparisons, so 
we’ll leave that educational aspect to other books.

You should familiarize with the truth tables in Figure 2.1, where x and y are assumed to 
be boolean data types.

F I GU R E 2 .1   The logical true tables for &, |, and ^

x & y
(AND)

x =

true

y =

true

true

y =

false

x =

false
false

false

false

x =

true

y =

true

true

y =

false

x =

false
true

true

false

x =

true

y =

true

false

y =

false

x =

false
true

true

false

x | y
(INCLUSIVE OR)

x ^ y
(EXCLUSIVE OR)

Here are some tips to help remember this table:

 ■ AND is only true if both operands are true.

 ■ Inclusive OR is only false if both operands are false.

 ■ Exclusive OR is only true if the operands are different.

Finally, we present the conditional operators, && and ||, which are often referred to as 
short-circuit operators. The short-circuit operators are nearly identical to the logical opera-
tors, & and |, respectively, except that the right-hand side of the expression may never be 
evaluated if the fi nal result can be determined by the left-hand side of the expression. For 
example, consider the following statement:

boolean x = true || (y < 4);

Referring to the truth tables, the value x can only be false if both sides of the expression 
are false. Since we know the left-hand side is true, there’s no need to evaluate the right-hand 
side, since no value of y will ever make the value of x anything other than true. It may help 
you to illustrate this concept by executing the previous line of code for various values of y.



Using Additional Binary Operators 65

c02.indd 1½  5/2014 Page 65

A more common example of where short-circuit operators are used is checking for null 
objects before performing an operation, such as this:

if(x != null && x.getValue() < 5) {

  // Do something

}

In this example, if x was null, then the short-circuit prevents a NullPointerException 
from ever being thrown, since the evaluation of x.getValue() < 5 is never reached. 
Alternatively, if we used a logical &, then both sides would always be evaluated and when x 
was null this would throw an exception:

if(x != null & x.getValue() < 5) { // Throws an exception if x is null

  // Do something

}

Be wary of short-circuit behavior on the exam, as questions are known to alter a vari-
able on the right-hand side of the expression that may never be reached. For example, what 
is the output of the following code?

int x = 6;

boolean y = (x >= 6) || (++x <= 7);

System.out.println(x);

Because x >= 6 is true, the increment operator on the right-hand side of the expression 
is never evaluated, so the output is 6.

Equality Operators
Determining equality in Java can be a nontrivial endeavor as there’s a semantic difference 
between “two objects are the same” and “two objects are equivalent.” It is further compli-
cated by the fact that for numeric and boolean primitives, there is no such distinction.

Let’s start with the basics, the equals operator == and not equals operator !=. Like the 
relational operators, they compare two operands and return a boolean value about whether 
the expressions or values are equal, or not equal, respectively. 

The equality operators are used in one of three scenarios:

1. Comparing two numeric primitive types. If the numeric values are of different data 
types, the values are automatically promoted as previously described. For example, 
5 == 5.00 returns true since the left side is promoted to a double.

2. Comparing two boolean values.

3. Comparing two objects, including null and String values.



66 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 66

The comparisons for equality are limited to these three cases, so you cannot mix and 
match types. For example, each of the following would result in a compiler error:

boolean x = true == 3;  // DOES NOT COMPILE

boolean y = false != "Giraffe";  // DOES NOT COMPILE

boolean z = 3 == "Kangaroo";  // DOES NOT COMPILE

Pay close attention to the data types when you see an equality operator on the exam. 
The exam creators also have a habit of mixing assignment operators and equality opera-
tors, as in the following snippet:

boolean y = false;

boolean x = (y = true);

System.out.println(x);  // Outputs true

At fi rst glance, you might think the output should be false, and if the expression was 
(y == true), then you would be correct. In this example, though, the expression is assign-
ing the value of true to y, and as you saw in the section on assignment operators, the 
assignment itself has the value of the assignment. Therefore, the output would be true.

For object comparison, the equality operator is applied to the references to the objects, 
not the objects they point to. Two references are equal if and only if they point to the same 
object, or both point to null. Let’s take a look at some examples:

File x = new File("myFile.txt");

File y = new File("myFile.txt");

File z = x;

System.out.println(x == y);  // Outputs false

System.out.println(x == z);  // Outputs true

Even though all of the variables point to the same fi le information, only two, x and z, 
are equal in terms of ==. In this example, as well as during the OCA exam, you may be pre-
sented with classnames that are unfamiliar, such as File. Many times you can answer ques-
tions about these classes without knowing the specifi c details of these classes. In particular, 
you should be able to answer questions that indicate x and y are two separate and distinct 
objects, even if you do not know the data types of these objects.

In Chapter 3, “Core Java APIs,” we’ll continue the discussion of object equality by intro-
ducing what it means for two different objects to be equivalent. We’ll also cover String 
equality and show how this can be a nontrivial topic.

Understanding Java Statements

Java operators allow you to create a lot of complex expressions, but they’re limited in the 
manner in which they can control program fl ow. For example, imagine you want a sec-
tion of code to only be executed under certain conditions that cannot be evaluated until 



Understanding Java Statements 67

c02.indd 1½  5/2014 Page 67

runtime. Or suppose you want a particular segment of code to repeat once for every item in 
some list.

As you may recall from Chapter 1, a Java statement is a complete unit of execution in 
Java, terminated with a semicolon (;). For the remainder of the chapter, we’ll be introduc-
ing you to various Java control fl ow statements. Control fl ow statements break up the fl ow 
of execution by using decision making, looping, and branching, allowing the application to 
selectively execute particular segments of code.

These statements can be applied to single expressions as well as a block of Java code. 
As described in the previous chapter, a block of code in Java is a group of zero or more 
statements between balanced braces, ({}), and can be used anywhere a single statement is 
allowed.

The if-then Statement
Often, we only want to execute a block of code under certain circumstances. The if-then 
statement, as shown in Figure 2.2, accomplishes this by allowing our application to execute 
a particular block of code if and only if a boolean expression evaluates to true at runtime.

F I GU R E 2 . 2   The structure of an if-then statement

if(booleanExpression) {

     // Branch if true

}

if keyword

Curly braces required for block
of multiple statements, optional
for single statement

Parentheses (required)

For example, imagine we had a function that used the hour of day, an integer value from 
0 to 23, to display a message to the user:

if(hourOfDay < 11)

      System.out.println("Good Morning");

If the hour of the day is less than 11, then the message will be displayed. Now let’s say 
we also wanted to increment some value, morningGreetingCount, every time the greeting 
is printed. We could write the if-then statement twice, but luckily Java offers us a more 
natural approach using a block:

if(hourOfDay < 11) {

  System.out.println("Good Morning");

  morningGreetingCount++;

}



68 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 68

The block allows multiple statements to be executed based on the if-then evaluation. 
Notice that the fi rst statement didn’t contain a block around the print section, but it easily 
could have. For readability, it is considered good coding practice to put blocks around the 
execution component of if-then statements, as well as many other control fl ow statements, 
although it is not required.

Watch Indentation and Braces

One area that the exam writers will try to trip you up is on if-then statements without 

braces ({}). For example, take a look at this slightly modifi ed form of our example:

if(hourOfDay < 11)

  System.out.println("Good Morning");

  morningGreetingCount++;

Based on the indentation, you might be inclined to think the variable morningGreeting-

Count is only going to be incremented if the hourOfDay is less than 11, but that’s not what 

this code does. It will execute the print statement only if the condition is met, but it will 

always execute the increment operation.

Remember that in Java, unlike some other programming languages, tabs are just 

whitespace and are not evaluated as part of the execution. When you see a control fl ow 

statement in a question, be sure to trace the open and close braces of the block and 

ignore any indentation you may come across.

The if-then-else Statement
Let’s expand our example a little. What if we want to display a different message if it is 11 
a.m. or later? Could we do it using only the tools we have? Of course we can!

if(hourOfDay < 11) {

  System.out.println("Good Morning");

}

if(hourOfDay >= 11) {

  System.out.println("Good Afternoon");

}

This seems a bit redundant, though, since we’re performing an evaluation on hourOfDay 
twice. It’s also wasteful because in some circumstances the cost of the boolean expression 
we’re evaluating could be computationally expensive. Luckily, Java offers us a more useful 
approach in the form of an if-then-else statement, as shown in Figure 2.3.



Understanding Java Statements 69

c02.indd 1½  5/2014 Page 69

F I GU R E 2 . 3   The structure of an if-then-else statement

if(booleanExpression) {

     // Branch if true

} else {

     // Branch if false

}

if keyword
Parentheses (required)

Optional else statement

Curly braces required for block
of multiple statements, optional
for single statement

Let’s return to this example:

if(hourOfDay < 11) {

  System.out.println("Good Morning");

} else {

  System.out.println("Good Afternoon");

}

Now our code is truly branching between one of the two possible options, with the 
boolean evaluation happening only once. The else operator takes a statement or block of 
statement, in the same manner as the if statement does. In this manner, we can append 
additional if-then statements to an else block to arrive at a more refi ned example:

if(hourOfDay < 11) {

  System.out.println("Good Morning");

} else if(hourOfDay < 15) {

  System.out.println("Good Afternoon");

} else {

  System.out.println("Good Evening");

}

In this example, the Java process will continue execution until it encounters an if-then 
statement that evaluates to true. If neither of the fi rst two expressions are true, it will 
execute the fi nal code of the else block. One thing to keep in mind in creating complex 



70 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 70

if-then-else statements is that order is important. For example, see what happens if we 
reorder the previous snippet of code as follows:

if(hourOfDay < 15) {

  System.out.println("Good Afternoon");

} else if(hourOfDay < 11) {

  System.out.println("Good Morning");  // UNREACHABLE CODE

} else {

  System.out.println("Good Evening");

}

For hours of the day less than 11, this code behaves very differently than the previous set 
of code. See if you can determine why the second block can never be executed regardless of 
the value of hourOfDay.

If a value is less than 11, then it must be also less than 15 by defi nition. Therefore, if the 
second branch in the example can be reached, the fi rst branch can also be reached. Since 
execution of each branch is mutually exclusive in this example—that is, only one branch 
can be executed—if the fi rst branch is executed, then the second cannot be executed. 
Therefore, there is no way the second branch will ever be executed, and the code is deemed 
unreachable.

Verifying the if Statement Evaluates to a Boolean Expression

Another common place the exam may try to lead you astray is by providing code where 

the boolean expression inside the if-then statement is not actually a boolean expres-

sion. For example, take a look at the following lines of code:

int x = 1;

if(x) {  // DOES NOT COMPILE

  ...

}

This statement may be valid in some other programming and scripting languages, but not 

in Java, where 0 and 1 are not considered boolean values. Also, be wary of assignment 

operators being used as if they were equals == operators in if-then statements:

int x = 1;

if(x = 5) {  // DOES NOT COMPILE

  ...

}



Understanding Java Statements 71

c02.indd 1½  5/2014 Page 71

Ternary Operator
Now that we have discussed if-then-else statements, we can briefl y return to our discus-
sion of operators and present the fi nal operator that you need to learn for the exam. The 
conditional operator, ? :, otherwise known as the ternary operator, is the only operator 
that takes three operands and is of the form:

booleanExpression ? expression
1
 : expression

2

The fi rst operand must be a boolean expression, and the second and third can be any 
expression that returns a value. The ternary operation is really a condensed form of an if-
then-else statement that returns a value. For example, the following two snippets of code 
are equivalent:

int y = 10;

final int x;

if(y > 5) {

  x = 2 * y;

} else {

  x = 3 * y;

}

Compare the previous code snippet with the following equivalent ternary operator code 
snippet:

int y = 10;

int x = (y > 5) ? (2 * y) : (3 * y);

Note that it is often helpful for readability to add parentheses around the expressions in 
ternary operations, although it is certainly not required.

There is no requirement that second and third expressions in ternary operations have 
the same data types, although it may come into play when combined with the assignment 
operator. Compare the following two statements:

System.out.println((y > 5) ? 21 : "Zebra");

int animal = (y < 91) ? 9 : "Horse";  // DOES NOT COMPILE

 Both expressions evaluate similar boolean values and return an int and a String, 
although only the fi rst line will compile. The System.out.println() does not care that the 
statements are completely different types, because it can convert both to String. On the 
other hand, the compiler does know that "Horse" is of the wrong data type and cannot be 
assigned to an int; therefore, it will not allow the code to be compiled.



72 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 72

Ternary Expression Evaluation

As of Java 7, only one of the right-hand expressions of the ternary operator will be evalu-

ated at runtime. In a manner similar to the short-circuit operators, if one of the two right-

hand expressions in a ternary operator performs a side effect, then it may not be applied 

at runtime. Let’s illustrate this principle with the following example:

int y = 1;

int z = 1;

final int x = y<10 ? y++ : z++;

System.out.println(y+","+z); // Outputs 2,1

Notice that since the left-hand boolean expression was true, only y was incremented. 

Contrast the preceding example with the following modifi cation:

int y = 1;

int z = 1;

final int x = y>=10 ? y++ : z++;

System.out.println(y+","+z); // Outputs 1,2

Now that the left-hand boolean expression evaluates to false, only z was incremented. 

In this manner, we see how the expressions in a ternary operator may not be applied if 

the particular expression is not used.

For the exam, be wary of any question that includes a ternary expression in which a vari-

able is modifi ed in one of the right-hand side expressions.

The switch Statement
We now expand on our discussion of if-then-else statements by discussing a switch 
statement. A switch statement, as shown in Figure 2.4, is a complex decision-making struc-
ture in which a single value is evaluated and fl ow is redirected to the fi rst matching branch, 
known as a case statement. If no such case statement is found that matches the value, an 
optional default statement will be called. If no such default option is available, the entire 
switch statement will be skipped.

Supported Data Types
As shown in Figure 2.4, a switch statement has a target variable that is not evaluated until 
runtime. Prior to Java 5.0, this variable could only be int values or those values that could 
be promoted to int, specifi cally byte, short, char, or int. When enum was added in Java 
5.0, support was added to switch statements to support enum values. In Java 7, switch 



Understanding Java Statements 73

c02.indd 1½  5/2014 Page 73

statements were further updated to allow matching on String values. Finally, the switch 
statement also supports any of the primitive numeric wrapper classes, such as Byte, Short, 
Character, or Integer.

F I GU R E 2 . 4   The structure of a switch statement

switch(variableToTest) {

     

     case constantExpression1:

          // Branch for case1;

     case constantExpression2:

          // Branch for case2;

     ...

     default:

          // Branch for default

}

switch keyword

switch statement may
contain 0 or more
case branches

Beginning curly brace (required)

Optional break

Optional default that may
appear anywhere within
switch statement

Ending curly brace (required)

Parentheses (required)

break;

break;

Data types supported by switch statements include the following:

 ■ int and Integer

 ■ byte and Byte

 ■ short and Short

 ■ char and Character

 ■ int and Integer

 ■ String

 ■ enum values

For the exam, we recommend you memorize this list. Note that boolean and long, and 
their associated wrapper classes, are not supported by switch statements.

Compile-time Constant Values
The values in each case statement must be compile-time constant values of the same data 
type as the switch value. This means you can use only literals, enum constants, or final 



74 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 74

constant variables of the same data type. By final constant, we mean that the variable 
must be marked with the final modifi er and initialized with a literal value in the same 
expression in which it is declared.

Let’s look at a simple example using the day of the week, with 0 for Sunday, 1 for 
Monday, and so on:

int dayOfWeek = 5;

switch(dayOfWeek) {

  default:

    System.out.println("Weekday");

    break;

  case 0:

    System.out.println("Sunday");

    break;

  case 6:

    System.out.println("Saturday");

    break;

}

With a value of dayOfWeek of 5, this code will output:

Weekday

The fi rst thing you may notice is that there is a break statement at the end of each case 
and default section. We’ll discuss break statements in detail when we discuss loops, but 
for now all you need to know is that they terminate the switch statement and return fl ow 
control to the enclosing statement. As we’ll soon see, if you leave out the break statement, 
fl ow will continue to the next proceeding case or default block automatically.

Another thing you might notice is that the default block is not at the end of the switch 
statement. There is no requirement that the case or default statements be in a particular 
order, unless you are going to have pathways that reach multiple sections of the switch 
block in a single execution.

To illustrate both of the preceding points, consider the following variation:

int dayOfWeek = 5;

switch(dayOfWeek) {

  case 0:

    System.out.println("Sunday");

  default:

    System.out.println("Weekday");

  case 6:

    System.out.println("Saturday");

    break;

}



Understanding Java Statements 75

c02.indd 1½  5/2014 Page 75

This code looks a lot like the previous example except two of the break statements have 
been removed and the order has been changed. This means that for the given value of day-
OfWeek, 5, the code will jump to the default block and then execute all of the proceeding 
case statements in order until it fi nds a break statement or fi nishes the structure:

Weekday

Saturday

The order of the case and default statements is now important since placing the 
default statement at the end of the switch statement would cause only one word to be 
output.

What if the value of dayOfWeek was 6 in this example? Would the default block still be 
executed? The output of this example with dayOfWeek set to 6 would be:

Saturday

Even though the default block was before the case block, only the case block was exe-
cuted. If you recall the defi nition of the default block, it is only branched to if there is no 
matching case value for the switch statement, regardless of its position within the switch 
statement.

Finally, if the value of dayOfWeek was 0, all three statements would be output:
Sunday

Weekday

Saturday

Notice that in this last example, the default is executed since there was no break state-
ment at the end of the preceding case block. While the code will not branch to the default 
statement if there is a matching case value within the switch statement, it will execute the 
default statement if it encounters it after a case statement for which there is no terminat-
ing break statement.

The exam creators are fond of switch examples that are missing break statements! 
When evaluating switch statements on the exam, always consider that multiple branches 
may be visited in a single execution.

We conclude our discussion on switch statements by acknowledging that the data type 
for case statements must all match the data type of the switch variable. As already dis-
cussed, the case statement value must also be a literal, enum constant, or final constant 
variable. For example, given the following switch statement, notice which case statements 
will compile and which will not:

private int getSortOrder(String firstName, final String lastName) {

  String middleName = "Patricia";

  final String suffix = "JR";

  int id = 0;

  switch(firstName) {

    case "Test":

      return 52;



76 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 76

    case middleName:  // DOES NOT COMPILE

      id = 5;

      break;

    case suffix:

      id = 0;

      break;

    case lastName:  // DOES NOT COMPILE

      id = 8;

      break;

    case 5:  // DOES NOT COMPILE

      id = 7;

      break;

    case 'J':  // DOES NOT COMPILE

      id = 10;

      break;

    case java.time.DayOfWeek.SUNDAY:  // DOES NOT COMPILE

      id=15;

      break;

  }

  return id;

}

The fi rst case statement compiles without issue using a String literal and is a good 
example of how a return statement, like a break statement, can be used to exit the switch 
statement early. The second case statement does not compile because middleName is not a 
final variable, despite having a known value at this particular line of execution. The third 
case statement compiles without issue because suffix is a final constant variable.

In the fourth case statement, despite lastName being final, it is not constant as it is 
passed to the function; therefore, this line does not compile as well. Finally, the last three 
case statements don’t compile because none of them have a matching type of String; the 
last one is an enum value.

The while Statement
A repetition control structure, which we refer to as a loop, executes a statement of code 
multiple times in succession. By using nonconstant variables, each repetition of the state-
ment may be different. For example, a statement that iterates over a list of unique names 
and outputs them would encounter a new name on every execution of the loop.



Understanding Java Statements 77

c02.indd 1½  5/2014 Page 77

The simplest such repetition control structure in Java is the while statement, described 
in Figure 2.5. Like all repetition control structures, it has a termination condition, imple-
mented as a boolean expression, that will continue as long as the expression evaluates to 
true.

F I GU R E 2 .5   The structure of a while statement

while(booleanExpression) {

     // Body

}

while keyword

Curly braces required for block
of multiple statements, optional
for single statement

Parentheses (required)

As shown in Figure 2.5, a while loop is similar to an if-then statement in that it is 
composed of a boolean expression and a statement, or block of statements. During execu-
tion, the boolean expression is evaluated before each iteration of the loop and exits if the 
evaluation returns false. It is important to note that a while loop may terminate after its 
fi rst evaluation of the boolean expression. In this manner, the statement block may never 
be executed.

Let’s return to our mouse example from Chapter 1 and show a loop can be used to 
model a mouse eating a meal:
int roomInBelly = 5;

public void eatCheese(int bitesOfCheese) {

  while (bitesOfCheese > 0 && roomInBelly > 0) { 

    bitesOfCheese--;

    roomInBelly--;

  }

  System.out.println(bitesOfCheese+" pieces of cheese left");

}

This method takes an amount of food, in this case cheese, and continues until the mouse 
has no room in its belly or there is no food left to eat. With each iteration of the loop, the 
mouse “eats” one bite of food and loses one spot in its belly. By using a compound boolean 
statement, you ensure that the while loop can end for either of the conditions.



78 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 78

Infi nite Loops

Consider the following segment of code:

int x = 2;

int y = 5;

while(x < 10)

  y++;

You may notice one glaring problem with this statement: it will never end! The boolean 

expression that is evaluated prior to each loop iteration is never modifi ed, so the expres-

sion (x < 10) will always evaluate to true. The result is that the loop will never end, cre-

ating what is commonly referred to as an infi nite loop.

Infi nite loops are something you should be aware of any time you create a loop in your 

application. You should be absolutely certain that the loop will eventually terminate 

under some condition. First, make sure the loop variable is modifi ed. Then, ensure that 

the termination condition will be eventually reached in all circumstances. As you’ll see 

in the upcoming section “Understanding Advanced Flow Control,” a loop may also exit 

under other conditions such as a break statement.

The do-while Statement
Java also allows for the creation of a do-while loop, which like a while loop, is a 
repetition control structure with a termination condition and statement, or block of 
statements, as shown in Figure 2.6. Unlike a while loop, though, a do-while loop guaran-
tees that the statement or block will be executed at least once.

F I GU R E 2 .6   The structure of a do-while statement

do {

     // Body

} while (booleanExpression);

Curly braces required for block
of multiple statements, optional
for single statement

do keyword

while keyword
Parentheses (required)

Semicolon (required)



Understanding Java Statements 79

c02.indd 1½  5/2014 Page 79

The primary difference between the syntactic structure of a do-while loop and a while 
loop is that a do-while loop purposely orders the statement or block of statements before 
the conditional expression, in order to reinforce that the statement will be executed before 
the expression is ever evaluated. For example, take a look at the output of the following 
statements:

int x = 0;

do {

  x++;

} while(false);

System.out.println(x);  // Outputs 1

Java will execute the statement block fi rst, and then check the loop condition. Even 
though the loop exits right away, the statement block was still executed once and the pro-
gram outputs a 1.

When to Use while vs. do-while Loops

In practice, it might be diffi cult to determine when you should use a while loop and when 

you should use a do-while loop. The short answer is that it does not actually matter. Any 

while loop can be converted to a do-while loop, and vice versa. For example, compare 

this while loop:

while(x > 10) {

  x--;

}

and this do-while loop:

if(x > 10) {

  do {

    x--;

  } while(x > 10);

}

Though one of the loops is certainly easier to read, they are functionally equivalent. Java 

recommends you use a while loop when a loop might not be executed at all and a do-

while loop when the loop is executed at least once. But determining whether you should 

use a while loop or a do-while loop in practice is sometimes about personal preference 

and code readability.

For example, although the fi rst statement is shorter, the second has the advantage that 

you could leverage the existing if-then statement and perform some other operation in 

a new else branch, as shown in the following example:

continues



80 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 80

if(x > 10) {

  do {

    x--;

  } while(x > 10);

} else {

  x++;

}

The for Statement
Now that you can build applications with simple while and do-while statements, we 
expand our discussion of loops to a more complex repetition control structure called a for 
loop. 

Starting in Java 5.0, there are now two types of for statements. The fi rst is referred to as 
the basic for loop, and the second is often called the enhanced for loop. For clarity, we’ll 
refer to the enhanced for loop as the for-each statement throughout the book.

The Basic for Statement
A basic for loop has the same conditional boolean expression and statement, or block of 
statements, as the other loops you have seen, as well as two new sections: an initialization 
block and an update statement. Figure 2.7 shows how these components are laid out.

F I GU R E 2 .7   The structure of a basic for statement

for(initialization; booleanExpression; updateStatement) {

     // Body

}
Curly braces required for block
of multiple statements, optional
for single statement

for keyword Parentheses (required)

Semicolons (required)

1  Initialization statement executes
2  If booleanExpression is true continue, else exit loop
3  Body executes
4  Execute updateStatements
5  Return to Step 2

continued



Understanding Java Statements 81

c02.indd 1½  5/2014 Page 81

Although Figure 2.7 might seem a little confusing and almost arbitrary at fi rst, the orga-
nization of the components and fl ow allow us to create extremely powerful statements in a 
very small amount of space that otherwise would take multiple lines with a standard while 
loop. Note that each section is separated by a semicolon. The initialization and update sec-
tions may contain multiple statements, separated by commas.

Variables declared in the initialization block of a for loop have limited scope and 
are only accessible within the for loop. Be wary of any exam questions in which a vari-
able declared within the initialization block of a for loop is available outside the loop. 
Alternatively, variables declared before the for loop and assigned a value in the initializa-
tion block may be used outside the for loop because their scope precedes the for loop 
creation.

Let’s take a look at an example that prints the numbers 0 to 9:

for(int i = 0; i < 10; i++) {

  System.out.print(i + " ");

}

The local variable i is initialized fi rst to 0. The variable i is only in scope for the dura-
tion of the loop and is not available outside the loop once the loop has completed. Like a 
while loop, the boolean condition is evaluated on every iteration of the loop before the 
loop executes. Since it returns true, the loop executes and outputs the 0 followed by a 
space. Next, the loop executes the update section, which in this case increases the value 
of i to 1. The loop then evaluates the boolean expression a second time, and the process 
repeats multiple times, printing:

0 1 2 3 4 5 6 7 8 9 

On the 10th iteration of the loop, the value of i reaches 9 and is incremented by 1 to 
reach 10. On the 11th iteration of the loop, the boolean expression is evaluated and since 
(10 < 10) returns false, the loop terminates without executing the statement loop body.

Although most for loops you are likely to encounter in practice will be well defi ned and 
similar to the previous example, there are a number of variations and edge cases you could 
see on the exam. You should familiarize yourself with the following fi ve examples:
variations of these are likely to be seen on the exam.

Let’s tackle some examples for illustrative purposes:

1. Creating an Infinite Loop

for( ; ; ) {

  System.out.println("Hello World");
}

Although this for loop may look like it will throw a compiler error, it will in fact compile 
and run without issue. It is actually an infi nite loop that will print the same statement 
repeatedly. This example reinforces the fact that the components of the for loop are each 
optional. Note that the semicolons separating the three sections are required, as for( ; ) 
and for( ) will not compile.



82 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 82

2. Adding Multiple Terms to the for Statement
int x = 0;

for(long y = 0, z = 4; x < 5 && y < 10; x++, y++) {

  System.out.print(y + " ");

}

System.out.print(x);

This code demonstrates three variations of the for loop you may not have seen. First, you 
can declare a variable, such as x in this example, before the loop begins and use it after it 
completes. Second, your initialization block, boolean expression, and update statements 
can include extra variables that may not reference each other. For example, z is defi ned in 
the initialization block and is never used. Finally, the update statement can modify multiple 
variables. This code will print the following when executed:

0 1 2 3 4

Keep this example in mind when we look at the next three examples, none of which 
compile.

3. Redeclaring a Variable in the Initialization Block
int x = 0;

for(long y = 0, x = 4; x < 5 && y < 10; x++, y++) {   // DOES NOT COMPILE

  System.out.print(x + " ");

}

This example looks similar to the previous one, but it does not compile because of the ini-
tialization block. The difference is that x is repeated in the initialization block after already 
being declared before the loop, resulting in the compiler stopping because of a duplicate 
variable declaration. We can fi x this loop by changing the declaration of x and y as follows:

int x = 0;

long y = 10;

for(y = 0, x = 4; x < 5 && y < 10; x++, y++) {

  System.out.print(x + " ");

}

Note that this variation will now compile because the initialization block simply assigns a 
value to x and does not declare it.

4. Using Incompatible Data Types in the Initialization Block
for(long y = 0, int x = 4; x < 5 && y<10; x++, y++) {   // DOES NOT COMPILE

  System.out.print(x + " ");

}

This example also looks a lot like our second example, but like the third example will not 
compile, although this time for a different reason. The variables in the initialization block 
must all be of the same type. In the fi rst example, y and z were both long, so the code com-
piled without issue, but in this example they have differing types, so the code will not compile.



Understanding Java Statements 83

c02.indd 1½  5/2014 Page 83

5. Using Loop Variables Outside the Loop
for(long y = 0, x = 4; x < 5 && y < 10; x++, y++) {

  System.out.print(y + " ");

}

System.out.print(x);  // DOES NOT COMPILE

The fi nal variation on the second example will not compile for a different reason than the 
previous examples. If you notice, x is defi ned in the initialization block of the loop, and 
then used after the loop terminates. Since x was only scoped for the loop, using it outside 
the loop will throw a compiler error.

The for-each Statement
Starting with Java 5.0, Java developers have had a new type of enhanced for loop at their 
disposal, one specifi cally designed for iterating over arrays and Collection objects. This 
enhanced for loop, which for clarity we’ll refer to as a for-each loop, is shown in Figure 2.8.

F I GU R E 2 . 8   The structure of an enhancement for statement

for(datatype instance : collection) {

     // Body

}

for keyword Parentheses (required)

datatype of collection member

Iterable collection of objects

Semicolon (required)

Curly braces required for block
of multiple statements, optional
for single statement

The for-each loop declaration is composed of an initialization section and an object to 
be iterated over. The right-hand side of the for-each loop statement must be a built-in Java 
array or an object whose class implements java.lang.Iterable, which includes most of 
the Java Collections framework. The left-hand side of the for-each loop must include a 
declaration for an instance of a variable, whose type matches the type of a member of the 
array or collection in the right-hand side of the statement. On each iteration of the loop, the 
named variable on the left-hand side of the statement is assigned a new value from the array 
or collection on the right-hand side of the statement.

For the OCA exam, the only members of the Collections framework that 
you need to be aware of are List and ArrayList. In this chapter, we’ll 
show how to iterate over List objects, and in Chapter 3 we’ll go into detail 
about how to create List objects and how they differ from traditional Java 
arrays.



84 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 84

Let’s review some examples:

 ■ What will this code output?

final String[] names = new String[3];

names[0] = "Lisa";

names[1] = "Kevin";

names[2] = "Roger";

for(String name : names) {

  System.out.print(name + ", ");

}

This code will compile and print:

Lisa, Kevin, Roger,

 ■ What will this code output?

java.util.List<String> values = new java.util.ArrayList<String>();

values.add("Lisa");

values.add("Kevin");

values.add("Roger");

for(String value : values) {

  System.out.print(value + ", ");

}

This code will compile and print the same values: 

Lisa, Kevin, Roger,

When you see a for-each loop on the exam, make sure the right-hand side is an array 
or Iterable object and the left-hand side has a matching type. For example, the two 
examples that follow will not compile.

 ■ Why will the following fail to compile?

String names = "Lisa";

for(String name : names) {   // DOES NOT COMPILE

  System.out.print(name + " ");

}

In this example, the String names is not an array, nor does it implement java.lang.
Iterable, so the compiler will throw an exception since it does not know how to iter-
ate over the String.

 ■ Why will the following fail to compile?

String[] names = new String[3];

for(int name : names) {  // DOES NOT COMPILE

  System.out.print(name + " ");

}



Understanding Java Statements 85

c02.indd 1½  5/2014 Page 85

This code will fail to compile because the left-hand side of the for-each statement does 
not defi ne an instance of String. Notice that in this last example, the array is initial-
ized with three null pointer values. In and of itself, that will not cause the code to not 
compile, as a corrected loop would just output null three times. 

Comparing for and for-each Loops

Since for and for-each both use the same keyword, you might be wondering how they 

are related. While this discussion is out of scope for the exam, let’s take a moment to 

explore how for-each loops are converted to for loops by the compiler.

When for-each was introduced in Java 5, it was added as a compile-time enhancement. 

This means that Java actually converts the for-each loop into a standard for loop during 

compilation. For example, assuming names is an array of String[] as we saw in the fi rst 

example, the following two loops are equivalent:

for(String name : names) {

  System.out.print(name + ", ");

}

for(int i=0; i < names.length; i++) {

  String name = names[i];

  System.out.print(name + ", ");

}

For objects that inherit java.lang.Iterable, there is a different, but similar, conversion. 

For example, assuming values is an instance of List<Integer>, as we saw in the second 

example, the following two loops are equivalent:

for(int value : values) {

  System.out.print(value + ", ");

}

for(java.util.Iterator<Integer> i = values.iterator(); i.hasNext(); ) {

  int value = i.next();

  System.out.print(value + ", ");

}

Notice that in the second version, there is no update statement as it is not required when 

using the java.util.Iterator class.

You may have noticed that in the previous for-each examples, there was an extra 
comma printed at the end of the list:

Lisa, Kevin, Roger,



86 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 86

While the for-each statement is convenient for working with lists in many cases, it does 
hide access to the loop iterator variable. If we wanted to print only the comma between 
names, we could convert the example into a standard for loop, as in the following example:

java.util.List<String> names = new java.util.ArrayList<String>();

names.add("Lisa");

names.add("Kevin");

names.add("Roger");

for(int i=0; i<names.size(); i++) {

  String name = names.get(i);

  if(i>0) {

    System.out.print(", ");

  }

  System.out.print(name);

}

This sample code would output the following:

Lisa, Kevin, Roger

It is also common to use a standard for loop over a for-each loop if comparing mul-
tiple elements in a loop within a single iteration, as in the following example. Notice that 
we skip the fi rst loop’s execution, since value[-1] is not defi ned and would throw an 
IndexOutOfBoundsException error.

int[] values = new int[3];

values[0] = 10;

values[1] = new Integer(5);

values[2] = 15;

for(int i=1; i<values.length; i++) {

  System.out.print(values[i]-values[i-1]);

}

This sample code would output the following:

-5, 10, 

Despite these examples, enhanced for-each loops are quite useful in Java in a variety of 
circumstances. As a developer, though, you can always revert to a standard for loop if you 
need fi ne-grain control.

Understanding Advanced Flow Control

Up to now, we have been dealing with single loops that only ended when their boolean 
expression evaluated to false. We’ll now show you other ways loops could end, or branch, 
and you’ll see that the path taken during runtime may not be as straightforward as in previ-
ous examples.



Understanding Advanced Flow Control 87

c02.indd 1½  5/2014 Page 87

Nested Loops
First off, loops can contain other loops. For example, consider the following code that iter-
ates over a two-dimensional array, an array that contains other arrays as its members. We’ll 
cover multidimensional arrays in detail in Chapter 3, but for now assume the following is 
how you would declare a two-dimensional array.

int[][] myComplexArray = {{5,2,1,3},{3,9,8,9},{5,7,12,7}};

for(int[] mySimpleArray : myComplexArray) {

  for(int i=0; i<mySimpleArray.length; i++) {

    System.out.print(mySimpleArray[i]+"\t");

  }

  System.out.println();

}

Notice that we intentionally mix a for and for-each loop in this example. The outer 
loops will execute a total of three times. Each time the outer loop executes, the inner loop 
is executed four times. When we execute this code, we see the following output:

5       2       1       3

3       9       8       9

5       7       12       7

Nested loops can include while and do-while, as shown in this example. See if you can 
determine what this code will output.

int x = 20;

while(x>0) {

  do {

    x -= 2

  } while (x>5);

  x--;

  System.out.print(x+"\t");

}

The fi rst time this loop executes, the inner loop repeats until the value of x is 4. The 
value will then be decremented to 3 and that will be the output at the end of the fi rst itera-
tion of the outer loop. On the second iteration of the outer loop, the inner do-while will 
be executed once, even though x is already not greater than 5. As you may recall, do-while 
statements always execute the body at least once. This will reduce the value to 1, which will 
be further lowered by the decrement operator in the outer loop to 0. Once the value reaches 
0, the outer loop will terminate. The result is that the code will output the following:
3       0

Adding Optional Labels
One thing we skipped when we presented if-then statements, switch statements, and 
loops is that they can all have optional labels. A label is an optional pointer to the head of a 



88 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 88

statement that allows the application fl ow to jump to it or break from it. It is a single word 
that is proceeded by a colon (:). For example, we can add optional labels to one of the pre-
vious examples:

int[][] myComplexArray = {{5,2,1,3},{3,9,8,9},{5,7,12,7}};

OUTER_LOOP:  for(int[] mySimpleArray : myComplexArray) {

  INNER_LOOP:  for(int i=0; i<mySimpleArray.length; i++) {

    System.out.print(mySimpleArray[i]+"\t");

  }

  System.out.println();

}

When dealing with only one loop, they add no value, but as we’ll see in the next sec-
tion, they are extremely useful in nested environments. Optional labels are often only used 
in loop structures. While this topic is not on the OCA exam, it is possible to add optional 
labels to control and block structures. That said, it is rarely considered good coding prac-
tice to do so.

For formatting, labels follow the same rules for identifi ers. For readability, they are com-
monly expressed in uppercase, with underscores between words, to distinguish them from 
regular variables.

The break Statement
As you saw when working with switch statements, a break statement transfers the fl ow 
of control out to the enclosing statement. The same holds true for break statements that 
appear inside of while, do-while, and for loops, as it will end the loop early, as shown in 
Figure 2.9

F I GU R E 2 . 9   The structure of a break statement

optionalLabel: while(booleanExpression) {

     // Body

     // Somewhere in loop

     break optionalLabel;

}

Optional reference to head of loop

Colon (required if optionalLabel is present)

Semicolon (required)

break keyword

Notice in Figure 2.9 that the break statement can take an optional label parameter. 
Without a label parameter, the break statement will terminate the nearest inner loop it is 



Understanding Advanced Flow Control 89

c02.indd 1½  5/2014 Page 89

currently in the process of executing. The optional label parameter allows us to break out 
of a higher level outer loop. In the following example, we search for the fi rst (x,y) array 
index position of a number within an unsorted two-dimensional array:

public class SearchSample {

  public static void main(String[] args) {

    int[][] list = {{1,13,5},{1,2,5},{2,7,2}};

    int searchValue = 2;

    int positionX = -1;

    int positionY = -1;

    PARENT_LOOP: for(int i=0; i<list.length; i++) {

      for(int j=0; j<list[i].length; j++) {

        if(list[i][j]==searchValue) {

          positionX = i;

          positionY = j;

          break PARENT_LOOP;

        }

      }

    }

    if(positionX==-1 || positionY==-1) {

      System.out.println("Value "+searchValue+" not found");

    } else {

      System.out.println("Value "+searchValue+" found at: " +

        "("+positionX+","+positionY+")");

    }

  }

}

When executed, this code will output:

Value 2 found at: (1,1)

In particular, take a look at the statement break PARENT_LOOP. This statement will break 
out of the entire loop structure as soon as the fi rst matching value is found. Now, imagine 
what would happen if we replaced the body of the inner loop with the following:

if(list[i][j]==searchValue) {

  positionX = i;

  positionY = j;

  break;

}

How would this change our fl ow and would the output change? Instead of exiting when 
the fi rst matching value is found, the program will now only exit the inner loop when the 



90 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 90

condition is met. In other words, the structure will now fi nd the fi rst matching value of the 
last inner loop to contain the value, resulting in the following output:

Value 2 found at: (2,0)

Finally, what if we removed the break altogether?

if(list[i][j]==searchValue) {

  positionX = i;

  positionY = j;

}

In this case, the code will search for the last value in the entire structure that has the 
matching value. The output will look like this:

Value 2 found at: (2,2)

You can see from this example that using a label on a break statement in a nested 
loop, or not using the break statement at all, can cause the loop structure to behave quite 
differently.

The continue Statement
Let’s now complete our discussion of advanced loop control with the continue statement, a 
statement that causes fl ow to fi nish the execution of the current loop, as shown in Figure 2.10.

F I GU R E 2 .10   The structure of a continue statement

optionalLabel: while(booleanExpression) {

     // Body

     // Somewhere in loop

     continue optionalLabel;

}

Optional reference to head of loop

Colon (required if optionalLabel is present)

Semicolon (required)

continue keyword

You may notice the syntax of the continue statement mirrors that of the break state-
ment. In fact, the statements are similar in how they are used, but with different results. 
While the break statement transfers control to the enclosing statement, the continue 
statement transfers control to the boolean expression that determines if the loop should 
continue. In other words, it ends the current iteration of the loop. Also like the break 
statement, the continue statement is applied to the nearest inner loop under execution 
using optional label statements to override this behavior. Let’s take a look at the following 
example:



Understanding Advanced Flow Control 91

c02.indd 1½  5/2014 Page 91

public class SwitchSample {

  public static void main(String[] args) {

    FIRST_CHAR_LOOP: for (int a = 1; a <= 4; a++) {

      for (char x = 'a'; x <= 'c'; x++) {

        if (a == 2 || x == 'b')

          continue FIRST_CHAR_LOOP;

        System.out.print(" " + a + x);

      }

    }

  }

}

With the structure as defi ned, the loop will return control to the parent loop any time 
the fi rst value is 2 or the second value is b. This results in one execution of the inner loop 
for each of three outer loop calls. The output looks like this:

1a 3a 4a

Now, imagine we removed the FIRST_CHAR_LOOP label in the continue statement so that 
control is returned to the inner loop instead of the outer. See if you can understand how the 
output will be changed to:

1a 1c 3a 3c 4a 4c

Finally, if we remove the continue statement and associated if-then statement alto-
gether, we arrive at a structure that outputs all the values, such as:

1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c

Table 2.5 will help remind you when labels, break, and continue statements are permit-
ted in Java. Although for illustrative purposes our examples have included using these state-
ments in nested loops, they can be used inside single loops as well.

TA B LE 2 .5   Advanced flow control usage

 Allows optional labels Allows break statement
Allows continue 
statement

if Yes * No No

while Yes Yes Yes

do while Yes Yes Yes

for Yes Yes Yes

switch Yes Yes No

* Labels are allowed for any block statement, including those that are preceded with an if-then statement.



92 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 92

Summary

This chapter covered a wide variety of topics, including dozens of Java operators, along 
with numerous control fl ow statements. Many of these operators and statements may have 
been new to you.

It is important that you understand how to use all of the required Java operators covered 
in this chapter and know how operator precedence infl uences the way a particular expres-
sion is interpreted. There will likely be numerous questions on the exam that appear to test 
one thing, such as StringBuilder or exception handling, when in fact the answer is related 
to the misuse of a particular operator that causes the application to fail to compile. When 
you see an operator on the exam, always check that the appropriate data types are used and 
that they match each other where applicable.

For statements, this chapter covered two types of control structures: decision-making 
controls structures, including if-then, if-then-else, and switch statements, as well as 
repetition control structures including for, for-each, while, and do-while. Remember that 
most of these structures require the evaluation of a particular boolean expression either for 
branching decisions or once per repetition. The switch statement is the only one that sup-
ports a variety of data types, including String variables as of Java 7.

With a for-each statement you don’t need to explicitly write a boolean expression, since 
the compiler builds them implicitly. For clarity, we referred to an enhanced for loop as a 
for-each loop, but syntactically they are written as a for statement.

We concluded this chapter by discussing advanced control options and how fl ow can be 
enhanced through nested loops, break statements, and continue statements. Be wary of 
questions on the exam that use nested statements, especially ones with labels, and verify 
they are being used correctly.

This chapter is especially important because at least one component of this chapter will 
likely appear in every exam question with sample code. Many of the questions on the exam 
focus on proper syntactic use of the structures, as they will be a large source of questions 
that end in “Does not compile.” You should be able to answer all of the review questions 
correctly or fully understand those that you answered incorrectly before moving on to later 
chapters.

Exam Essentials

Be able to write code that uses Java operators.  This chapter covered a wide variety of 
operator symbols. Go back and review them several times so that you are familiar with 
them throughout the rest of the book.

Be able to recognize which operators are associated with which data types.  Some opera-
tors may be applied only to numeric primitives, some only to boolean values, and some 
only to objects. It is important that you notice when an operator and operand(s) are mis-
matched, as this issue is likely to come up in a couple of exam questions.



Exam Essentials 93

c02.indd 1½  5/2014 Page 93

Understand Java operator precedence.  Most Java operators you’ll work with are binary, 
but the number of expressions is often greater than two. Therefore, you must understand 
the order in which Java will evaluate each operator symbol.

Be able to write code that uses parentheses to override operator precedence.  You can use 
parentheses in your code to manually change the order of precedence.

Understand if and switch decision control statements.  The if-then and switch state-
ments come up frequently throughout the exam in questions unrelated to decision control, 
so make sure you fully understand these basic building blocks of Java.

Understand loop statements.  Know the syntactical structure of all loops, including while, 
do-while, and for. Each loop has its own special properties and structures. Also, be famil-
iar with the enhanced for-each loops that iterate over lists.

Understand how break and continue can change flow control.  Know how to change the 
fl ow control within a statement by applying a break or continue command. Also know 
which control statements can accept break statements and which can accept continue 
statements. Finally, understand how these statements work inside embedded loops or 
switch statements.



94 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 94

Review Questions

1. Which of the following Java operators can be used with boolean variables? (Choose all that 
apply)

A. ==

B. +

C. --

D. !

E. %

F. <=

2. What data type (or types) will allow the following code snippet to compile? (Choose all that 
apply)
byte x = 5;

byte y = 10;

_____ z = x + y;

A. int

B. long

C. boolean

D. double

E. short

F. byte

3. What is the output of the following application?
1: public class CompareValues {

2:   public static void main(String[] args) {

3:     int x = 0;

4:     while(x++ < 10) {}

5:     String message = x > 10 ? "Greater than" : false;

6:     System.out.println(message+","+x);

7:   }

8: }

A. Greater than,10

B. false,10

C. Greater than,11

D. false,11

E. The code will not compile because of line 4.

F. The code will not compile because of line 5.



Review Questions 95

c02.indd 1½  5/2014 Page 95

4. What change would allow the following code snippet to compile? (Choose all that apply)
3: long x = 10;

4: int y = 2 * x;

A. No change; it compiles as is.

B. Cast x on line 4 to int.

C. Change the data type of x on line 3 to short.

D. Cast 2 * x on line 4 to int.

E. Change the data type of y on line 4 to short.

F. Change the data type of y on line 4 to long.

5. What is the output of the following code snippet?
3: java.util.List<Integer> list = new java.util.ArrayList<Integer>();

4: list.add(10);

5: list.add(14);

6: for(int x : list) {

7:   System.out.print(x + ", ");

8:   break;

9: }

A. 10, 14,

B. 10, 14

C. 10,

D. The code will not compile because of line 7.

E. The code will not compile because of line 8.

F. The code contains an infinite loop and does not terminate.

6. What is the output of the following code snippet?
3: int x = 4;

4: long y = x * 4 - x++;

5: if(y<10) System.out.println("Too Low");

6: else System.out.println("Just right");

7: else System.out.println("Too High");

A. Too Low

B. Just Right

C. Too High

D. Compiles but throws a NullPointerException.

E. The code will not compile because of line 6.

F. The code will not compile because of line 7.



96 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 96

7. What is the output of the following code?
1: public class TernaryTester {

2:   public static void main(String[] args) {

3:     int x = 5;

4:     System.out.println(x > 2 ? x < 4 ? 10 : 8 : 7);

5: }}

A. 5

B. 4

C. 10

D. 8

E. 7

F. The code will not compile because of line 4.

8. What is the output of the following code snippet?
3: boolean x = true, z = true;

4: int y = 20;

5: x = (y != 10) ^ (z=false);

6: System.out.println(x+", "+y+", "+z);

A. true, 10, true

B. true, 20, false

C. false, 20, true

D. false, 20, false

E. false, 20, true

F. The code will not compile because of line 5.

9. How many times will the following code print "Hello World"?
3: for(int i=0; i<10 ; ) {

4:   i = i++;

5:   System.out.println("Hello World");

6: }

A. 9

B. 10

C. 11

D. The code will not compile because of line 3.

E. The code will not compile because of line 5.

F. The code contains an infinite loop and does not terminate.

10. What is the output of the following code?
3: byte a = 40, b = 50;

4: byte sum = (byte) a + b;

5: System.out.println(sum);



Review Questions 97

c02.indd 1½  5/2014 Page 97

A. 40

B. 50

C. 90

D. The code will not compile because of line 4.

E. An undefined value.

11. What is the output of the following code?
1: public class ArithmeticSample {

2:   public static void main(String[] args) {

3:     int x = 5 * 4 % 3;

4:     System.out.println(x);

5: }}

A. 2

B. 3

C. 5

D. 6

E. The code will not compile because of line 3.

12. What is the output of the following code snippet?
3: int x = 0;

4: String s = null;

5: if(x == s) System.out.println("Success");

6: else System.out.println("Failure");

A. Success

B. Failure

C. The code will not compile because of line 4.

D. The code will not compile because of line 5.

13. What is the output of the following code snippet?
3: int x1 = 50, x2 = 75;

4: boolean b = x1 >= x2;

5: if(b = true) System.out.println("Success");

6: else System.out.println("Failure");

A. Success

B. Failure

C. The code will not compile because of line 4.

D. The code will not compile because of line 5.

14. What is the output of the following code snippet?
3: int c = 7;

4: int result = 4;



98 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 98

5: result += ++c;

6: System.out.println(result);

A. 8

B. 11

C. 12

D. 15

E. 16

F. The code will not compile because of line 5.

15. What is the output of the following code snippet?
3: int x = 1, y = 15;

4: while x < 10

5:   y––;

6:   x++;

7: System.out.println(x+", "+y);

A. 10, 5

B. 10, 6

C. 11, 5

D. The code will not compile because of line 3.

E. The code will not compile because of line 4.

F. The code contains an infinite loop and does not terminate.

16. What is the output of the following code snippet?
3: do {

4:   int y = 1;

5:   System.out.print(y++ + " ");

6: } while(y <= 10);

A. 1 2 3 4 5 6 7 8 9

B. 1 2 3 4 5 6 7 8 9 10

C. 1 2 3 4 5 6 7 8 9 10 11

D. The code will not compile because of line 6.

E. The code contains an infinite loop and does not terminate.

17. What is the output of the following code snippet?
3: boolean keepGoing = true;

4: int result = 15, i = 10;

5: do {

6:   i--;

7:   if(i==8) keepGoing = false;

8:   result -= 2;

9: } while(keepGoing);



Review Questions 99

c02.indd 1½  5/2014 Page 99

10: System.out.println(result);

A. 7

B. 9

C. 10

D. 11

E. 15

F. The code will not compile because of line 8.

18. What is the output of the following code snippet?
3: int count = 0;

4: ROW_LOOP: for(int row = 1; row <=3; row++)

5:   for(int col = 1; col <=2 ; col++) {

6:     if(row * col % 2 == 0) continue ROW_LOOP;

7:     count++;

8:   }

9: System.out.println(count);

A. 1

B. 2

C. 3

D. 4

E. 6

F. The code will not compile because of line 6.

19. What is the result of the following code snippet?
3: int m = 9, n = 1, x = 0;

4: while(m > n) {

5:   m--;

6:   n += 2;

7:   x += m + n;

8: }

9: System.out.println(x);

A. 11

B. 13

C. 23

D. 36

E. 50

F. The code will not compile because of line 7.

20. What is the result of the following code snippet?
3: final char a = 'A', d = 'D';

4: char grade = 'B';



100 Chapter 2 ■ Operators and Statements

c02.indd 1½  5/2014 Page 100

5: switch(grade) {

6:   case a:

7:   case 'B': System.out.print("great");

8:   case 'C': System.out.print("good"); break;

9:   case d:

10:  case 'F': System.out.print("not good");

11: }

A. great

B. greatgood 

C. The code will not compile because of line 3.

D. The code will not compile because of line 6.

E. The code will not compile because of lines 6 and 9. 



c03.indd 1½  4/2014 Page 101

Chapter 

3
Core Java APIs

OCA EXAM OBJECTIVES COVERED 
IN THIS CHAPTER:

 ✓ Using Operators and Decision Constructs

 ■ Test equality between Strings and other objects using == and 

equals()

 ✓ Creating and Using Arrays

 ■ Declare, instantiate, initialize and use a one-dimensional 

array

 ■ Declare, instantiate, initialize and use a multi-dimensional 

array

 ✓ Working with Selected classes from the Java API

 ■ Creating and manipulating Strings

 ■ Manipulate data using the StringBuilder class and its methods

 ■ Declare and use an ArrayList of a given type

 ■ Create and manipulate calendar data using classes from java.

time.LocalDateTime, java.time.LocalDate, java.time.Local-

Time, java.time.format.DateTimeFormatter, java.time.Period

 ✓ Working with Java Data Types

 ■ Develop code that uses wrapper classes such as Boolean, 

Double, and Integer.



c03.indd 1½  4/2014 Page 102

The OCA exam expects you to know the core data structures 
and classes used in Java, and in this chapter readers will learn 
about the most common methods available. For example, 

String and StringBuilder are used for text data. An array and an ArrayList are used 
when you have multiple values. A variety of classes are used for working with dates. In this 
chapter, you’ll also learn how to determine whether two objects are equal. 

API stands for application programming interface. In Java, an interface is something 
special. In the context of an API, it can be a group of class or interface defi nitions that gives 
you access to a service or functionality. You will learn about the most common APIs for 
each of the classes covered in this chapter.

Creating and Manipulating Strings

The String class is such a fundamental class that you’d be hard-pressed to write code with-
out it. After all, you can’t even write a main() method without using the String class. A 
string is basically a sequence of characters; here’s an example:

String name = "Fluffy";

As you learned in Chapter 1, “Java Building Blocks,” this is an example of a reference 
type. You also learned that reference types are created using the new keyword. Wait a minute. 
Something is missing from the previous example: it doesn’t have new in it! In Java, these two 
snippets both create a String:

String name = "Fluffy";

String name = new String("Fluffy");

Both give you a reference variable of type name pointing to the String object "Fluffy". They 
are subtly different, as you’ll see in the section “String Pool,” later in this chapter. For now, just 
remember that the String class is special and doesn’t need to be instantiated with new.

In this section, we’ll look at concatenation, immutability, the string pool, common methods, 
and method chaining.

Concatenation
In Chapter 2, “Operators and Statements,” you learned how to add numbers. 1 + 2 is clearly 
3. But what is "1" + "2"? It’s actually "12" because Java combines the two String objects. 



Creating and Manipulating Strings 103

c03.indd 1½  4/2014 Page 103

Placing one String before the other String and combining them together is called string 
concatenation. The OCA exam creators like string concatenation because the + operator 
can be used in two ways within the same line of code. There aren’t a lot of rules to know for 
this, but you have to know them well: 

1. If both operands are numeric, + means numeric addition.

2. If either operand is a String, + means concatenation.

3. The expression is evaluated left to right.

Now let’s look at some examples:

System.out.println(1 + 2);           // 3

System.out.println("a" + "b");       // ab

System.out.println("a" + "b" + 3);   // ab3

System.out.println(1 + 2 + "c");     // 3c

The fi rst example uses the fi rst rule. Both operands are numbers, so we use normal addition. 
The second example is simple string concatenation, described in the second rule. The quotes for 
the String are only used in code—they don’t get output.

The third example combines both the second and third rules. Since we start on the left, 
Java fi gures out what "a" + "b" evaluates to. You already know that one: it’s "ab". Then 
Java looks at the remaining expression of "ab" + 3. The second rule tells us to concatenate 
since one of the operands is a String.

In the fourth example, we start with the third rule, which tells us to consider 1 + 2. 
Both operands are numeric, so the fi rst rule tells us the answer is 3. Then we have 3 + "c", 
which uses the second rule to give us "3c". Notice all three rules get used in one line? The 
exam takes this a step further and will try to trick you with something like this:

int three = 3;

String four = "4";

System.out.println(1 + 2 + three + four);

When you see this, just take it slow and remember the three rules—and be sure to check 
the variable types. In this example, we start with the third rule, which tells us to consider 
1 + 2. The fi rst rule gives us 3. Next we have 3 + three. Since three is of type int, we 
still use the fi rst rule, giving us 6. Next we have 6 + four. Since four is of type String, we 
switch to the second rule and get a fi nal answer of "64". When you see questions like this, 
just take your time and check the types. Being methodical pays off.

There is only one more thing to know about concatenation, but it is an easy one. In this 
example, you just have to remember what += does. s += "2" means the same thing as s = 
s + "2". 

4: String s = "1";             // s currently holds "1"

5: s += "2";                   // s currently holds "12"

6: s += 3;                     // s currently holds "123"

7: System.out.println(s);      // 123



104 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 104

On line 5, we are “adding” two strings, which means we concatenate them. Line 6 tries 
to trick you by adding a number, but it’s just like we wrote s = s + 3. We know that a 
string “plus” anything else means to use concatenation.

To review the rules one more time: use numeric addition if two numbers are involved, 
use concatenation otherwise, and evaluate from left to right. Have you memorized these 
three rules yet? Be sure to do so before the exam!

Immutability
Once a String object is created, it is not allowed to change. It cannot be made larger or 
smaller, and you cannot change one of the characters inside it. 

You can think of a string as a storage box you have perfectly full and whose sides can’t 
bulge. There’s no way to add objects, nor can you replace objects without disturbing the 
entire arrangement. The trade-off for the optimal packing is zero fl exibility.

Mutable is another word for changeable. Immutable is the opposite—an object that 
can’t be changed once it’s created. On the OCA exam, you need to know that String is 
immutable.

More on Immutability

You won’t be asked to identify whether custom classes are immutable on the exam, but 

it’s helpful to see an example. Consider the following code:

class Mutable {

  private String s;

  public void setS(String newS){ s = newS; }  // Setter makes it mutable

  public String getS() { return s; }

}

final class Immutable {

  private String s = "name";

  public String getS() { return s; }

}

Immutable only has a getter. There's no way to change the value of s once it's set. 

Mutable has a setter as well. This allows the reference s to change to point to a different 

String later. Note that even though the String class is immutable, it can still be used in 

a mutable class. You can even make the instance variable final so the compiler reminds 

you if you accidentally change s.

Also, immutable classes in Java are fi nal, and subclasses can’t add mutable behavior.



Creating and Manipulating Strings 105

c03.indd 1½  4/2014 Page 105

You learned that + is used to do String concatenation in Java. There’s another way, 

which isn’t used much on real projects but is great for tricking people on the exam. What 

does this print out?

String s1 = "1";

String s2 = s1.concat("2");

s2.concat("3");

System.out.println(s2);

Did you say "12"? Good. The trick is to see if you forget that the String class is immutable 

by throwing a method at you.

The String Pool
Since strings are everywhere in Java, they use up a lot of memory. In some production appli-
cations, they can use up 25–40 percent of the memory in the entire program. Java realizes 
that many strings repeat in the program and solves this issue by reusing common ones. The 
string pool, also known as the intern pool, is a location in the Java virtual machine (JVM) 
that collects all these strings. 

The string pool contains literal values that appear in your program. For example, 
“name” is a literal and therefore goes into the string pool. myObject.toString() is a string 
but not a literal, so it does not go into the string pool. Strings not in the string pool are gar-
bage collected just like any other object.

Remember back when we said these two lines are subtly different?

String name = "Fluffy";

String name = new String("Fluffy");

The former says to use the string pool normally. The second says “No, JVM. I really 
don’t want you to use the string pool. Please create a new object for me even though it is 
less effi cient.” When you write programs, you wouldn’t want to do this. For the exam, you 
need to know that it is allowed.

Important String Methods
The String class has dozens of methods. Luckily, you need to know only a handful for the 
exam. The exam creators pick most of the methods developers use in the real world.

For all these methods, you need to remember that a string is a sequence of characters 
and Java counts from 0 when indexed. Figure 3.1 shows how each character in the string 
"animals" is indexed.



106 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 106

F I GU R E 3 .1   Indexing for a string

a n i m a sl

0 1 2 3 4 65

Let’s look at thirteen methods from the String class. Many of them are straightforward 
so we won’t discuss them at length. You need to know how to use these methods.

length()
The method length() returns the number of characters in the String. The method signa-
ture is as follows:

int length()

The following code shows how to use length():

String string = "animals";

System.out.println(string.length());  // 7

Wait. It outputs 7? Didn’t we just tell you that Java counts from 0? The difference is 
that zero counting happens only when you’re using indexes or positions within a list. When 
determining the total size or length, Java uses normal counting again.

charAt()
The method charAt() lets you query the string to fi nd out what character is at a specifi c 
index. The method signature is as follows:

char charAt(int index)

The following code shows how to use charAt():

String string = "animals";

System.out.println(string.charAt(0));  // a

System.out.println(string.charAt(6));  // s

System.out.println(string.charAt(7));  // throws exception

Since indexes start counting with 0, charAt(0) returns the “fi rst” character in the 
sequence. Similarly, charAt(6) returns the “seventh” character in the sequence. charAt(7) 
is a problem. It asks for the “eighth” character in the sequence, but there are only seven 
characters present. When something goes wrong that Java doesn’t know how to deal with, 
it throws an exception, as shown here. You’ll learn more about exceptions in Chapter 6, 
“Exceptions.”

java.lang.StringIndexOutOfBoundsException: String index out of range: 7

indexOf()
The method indexOf()looks at the characters in the string and fi nds the fi rst index that 
matches the desired value. indexOf can work with an individual character or a whole String 
as input. It can also start from a requested position. The method signatures are as follows:



Creating and Manipulating Strings 107

c03.indd 1½  4/2014 Page 107

int indexOf(char ch)

int indexOf(char ch, index fromIndex)

int indexOf(String str)

int indexOf(String str, index fromIndex)

The following code shows how to use indexOf():

String string = "animals";

System.out.println(string.indexOf('a'));         // 0

System.out.println(string.indexOf("al"));        // 4

System.out.println(string.indexOf('a', 4));      // 4

System.out.println(string.indexOf("al", 5));     // -1

Since indexes begin with 0, the fi rst 'a' matches at that position. The second statement 
looks for a more specifi c string and so matches later on. The third statement says Java 
shouldn’t even look at the characters until it gets to index 4. The fi nal statement doesn’t 
fi nd anything because it starts looking after the match occurred. Unlike charAt(), the 
indexOf() method doesn’t throw an exception if it can’t fi nd a match. indexOf() returns 
–1 when no match is found. Because indexes start with 0, the caller knows that –1 couldn’t 
be a valid index. This makes it a common value for a method to signify to the caller that no 
match is found.

substring()
The method substring() also looks for characters in a string. It returns parts of the string. 
The fi rst parameter is the index to start with for the returned string. As usual, this is a 
zero-based index. There is an optional second parameter, which is the end index you want 
to stop at.

Notice we said “stop at” rather than “include.” This means the endIndex parameter is 
allowed to be 1 past the end of the sequence if you want to stop at the end of the sequence. 
That would be redundant, though, since you could omit the second parameter entirely in 
that case. In your own code, you want to avoid this redundancy. Don’t be surprised if the 
exam uses it though. The method signatures are as follows:

int substring(int beginIndex)

int substring(int beginIndex, int endIndex)

The following code shows how to use substring():

String string = "animals";

System.out.println(string.substring(3));  // mals

System.out.println(string.substring(string.indexOf('m'))); // mals

System.out.println(string.substring(3, 4)); // m

System.out.println(string.substring(3, 7)); // mals



108 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 108

The substring() method is the trickiest String method on the exam. The fi rst example 
says to take the characters starting with index 3 through the end, which gives us "mals". 
The second example does the same thing: it calls indexOf() to get the index rather than 
hard-coding it. This is a common practice when coding because you may not know the 
index in advance.

The third example says to take the characters starting with index 3 until, but not includ-
ing, the character at index 4—which is a complicated way of saying we want a String with 
one character: the one at index 3. This results in "m". The fi nal example says to take the 
characters starting with index 3 until we get to index 7. Since index 7 is the same as the end 
of the string, it is equivalent to the fi rst example.

We hope that wasn’t too confusing. The next examples are less obvious:

System.out.println(string.substring(3, 3)); // empty string

System.out.println(string.substring(3, 2));  // throws exception

System.out.println(string.substring(3, 8)); // throws exception

The fi rst example in this set prints an empty string. The request is for the characters start-
ing with index 3 until you get to index 3. Since we start and end with the same index, there 
are no characters in between. The second example in this set throws an exception because 
the indexes can be backward. Java knows perfectly well that it will never get to index 2 if 
it starts with index 3. The third example says to continue until the eighth character. There 
is no eighth position, so Java throws an exception. Granted, there is no seventh character 
either, but at least there is the “end of string” invisible position.

Let’s review this one more time since substring() is so tricky. The method returns the 
string starting from the requested index. If an end index is requested, it stops right before 
that index. Otherwise, it goes to the end of the string.

toLowerCase() and toUpperCase()
Whew. After that mental exercise, it is nice to have methods that do exactly what they 
sound like! These methods make it easy to convert your data. The method signatures are as 
follows:

String toLowerCase(String str)

String toUpperCase(String str)

The following code shows how to use these methods:

String string = "animals";

System.out.println(string.toUpperCase());  // ANIMALS

System.out.println("Abc123".toLowerCase());  // abc123

These methods do what they say. toUpperCase() converts any lowercase characters to 
uppercase in the returned string. toLowerCase() converts any uppercase characters to low-
ercase in the returned string. These methods leave alone any characters other than letters. 
Also, remember that strings are immutable, so the original string stays the same.



Creating and Manipulating Strings 109

c03.indd 1½  4/2014 Page 109

equals() and equalsIgnoreCase()
The equals() method checks whether two String objects contain exactly the same char-
acters in the same order. The equalsIgnoreCase() method checks whether two String 
objects contain the same characters with the exception that it will convert the characters’ 
case if needed. The method signatures are as follows:

boolean equals(String str)

boolean equalsIgnoreCase(String str)

The following code shows how to use these methods:

System.out.println("abc".equals("ABC"));  // false

System.out.println("ABC".equals("ABC"));  // true

System.out.println("abc".equalsIgnoreCase("ABC"));  // true

This example should be fairly intuitive. In the fi rst example, the values aren’t exactly the 
same. In the second, they are exactly the same. In the third, they differ only by case, but it 
is okay because we called the method that ignores differences in case.

startsWith() and endsWith()
The startsWith() and endsWith() methods look at whether the provided value matches 
part of the String. The method signatures are as follows:

boolean startsWith(String prefix)

boolean endsWith(String suffix)

The following code shows how to use these methods:

System.out.println("abc".startsWith("a")); // true

System.out.println("abc".startsWith("A")); // false

System.out.println("abc".endsWith("c")); // true

System.out.println("abc".endsWith("a")); // false

Again, nothing surprising here. Java is doing a case-sensitive check on the values provided.

contains()
The contains() method also looks for matches in the String. It isn’t as particular as 
startsWith() and endsWith()—the match can be anywhere in the String. The method 
signature is as follows:

boolean contains(String str)

The following code shows how to use these methods:

System.out.println("abc".contains("b")); // true

System.out.println("abc".contains("B")); // false



110 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 110

Again, we have a case-sensitive search in the String. The contains() method is a conve-
nience method so you don’t have to write str.indexOf(otherString) != -1.

replace()
The replace() method does a simple search and replace on the string. There’s a ver-
sion that takes char parameters as well as a version that takes CharSequence parameters. 
A CharSequence is a general way of representing several classes, including String and 
StringBuilder. It’s called an interface, which we’ll cover in Chapter 5, “Class Design.” 
The method signatures are as follows:

String replace(char oldChar, char newChar)

String replace(CharSequence oldChar, CharSequence newChar)

The following code shows how to use these methods:

System.out.println("abcabc".replace('a', 'A')); // AbcAbc

System.out.println("abcabc".replace("a", "A")); // AbcAbc

The fi rst example uses the fi rst method signature, passing in char parameters. The 
second example uses the second method signature, passing in String parameters.

trim()
You’ve made it through the all the String methods you need to know except one. We left 
the easy one for last. The trim() method removes whitespace from the beginning and end 
of a String. In terms of the exam, whitespace consists of spaces along with the \t (tab) and 
\n (newline) characters. Other characters, such as \r (carriage return), are also included in 
what gets trimmed. The method signature is as follows:

public String trim()

The following code shows how to use this method:

System.out.println("abc".trim());           // abc

System.out.println("\t   a b c\n".trim()); // a b c

The fi rst example prints the original string because there are no whitespace characters 
at the beginning or end. The second example gets rid of the leading tab, subsequent spaces, 
and the trailing newline. It leaves the spaces that are in the middle of the string.

Method Chaining
It is common to call multiple methods on the same String, as shown here:

String start = "AniMaL   ";

String trimmed = start.trim();                 // "AniMaL"



c03.indd 1½  4/2014 Page 111

String lowercase = trimmed.toLowerCase();      // "animal"

String result = lowercase.replace('a', 'A');   // "Animal"

System.out.println(result);

This is just a series of String methods. Each time one is called, the returned value is put 
in a new variable. There are four String values along the way, and Animal is output.

However, on the exam there is a tendency to cram as much code as possible into a small 
space. You’ll see code using a technique called method chaining. Here’s an example:

String result = "AniMaL   ".trim().toLowerCase().replace('a', 'A');

System.out.println(result);

This code is equivalent to the previous example. It also creates four String objects and 
outputs Animal. To read code that uses method chaining, start at the left and evaluate the 
fi rst method. Then call the next method on the returned value of the fi rst method. Keep 
going until you get to the semicolon.

Remember that String is immutable. What do you think the result of this code is?

5: String a = "abc";

6: String b = a.toUpperCase();

7: b = b.replace("B", "2").replace('C', '3');

8: System.out.println("a=" + a);

9: System.out.println("b=" + b);

On line 5, we set a to point to "abc" and never pointed a to anything else. Since we are 
dealing with an immutable object, none of the code on lines 6 or 7 changes a.

b is a little trickier. Line 6 has b pointing to "ABC", which is straightforward. On line 7, 
we have method chaining. First, “ABC".replace("B", "2") is called. This returns "A2C". 
Next, "A2C".replace("'C', '3') is called. This returns "A23". Finally, b changes to point 
to this returned String. When line 9 executes, b is "A23".

Using the StringBuilder Class

A small program can create a lot of String objects very quickly. For example, how many 
do you think this piece of code creates?

10: String alpha = "";

11: for(char current = 'a'; current <= 'z'; current++) 

12:  alpha += current;

13: System.out.println(alpha);

The empty String on line 10 is instantiated, and then line 12 appends an "a". However, 
because the String object is immutable, a new String object is assigned to alpha and the 

Using the StringBuilder Class 111



112 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 112

“” object becomes eligible for garbage collection. The next time through the loop, alpha is 
assigned a new String object, "ab", and the "a" object becomes eligible for garbage 
collection. The next iteration assigns alpha to "abc" and the "ab" object becomes eligible 
for garbage collection, and so on. 

This sequence of events continues, and after 26 iterations through the loop, a total of 27 
objects are instantiated, most of which are immediately eligible for garbage collection.

This is very ineffi cient. Luckily, Java has a solution. The StringBuilder class 
creates a String without storing all those interim String values. Unlike the String class, 
StringBuilder is not immutable.

15: StringBuilder alpha = new StringBuilder();

16: for(char current = 'a'; current <= 'z'; current++) 

17:  alpha.append(current);

18: System.out.println(alpha);

On line 15, a new StringBuilder object is instantiated. The call to append() on line 17 
adds a character to the StringBuilder object each time through the for loop and appends 
the value of current to the end of alpha. This code reuses the same StringBuilder without 
creating an interim String each time. 

In this section, we’ll look at creating a StringBuilder, common methods, and a com-
parison to StringBuffer.

Mutability and Chaining
We’re sure you noticed this from the previous example, but StringBuilder is not immu-
table. In fact, we gave it 27 different values in the example (blank plus adding each 
letter in the alphabet). The exam will likely try to trick you with respect to String and 
StringBuilder being mutable.

Chaining makes this even more interesting. When we chained String method calls, the 
result was a new String with the answer. Chaining StringBuilder objects doesn’t work 
this way. Instead, the StringBuilder changes its own state and returns a reference to itself! 
Let’s look at an example to make this clearer:

4: StringBuilder sb = new StringBuilder("start");

5: sb.append("+middle");                      // sb = "start+middle" 

6: StringBuilder same = sb.append("+end");    // "start+middle+end"

Line 5 adds text to the end of sb. It also returns a reference to sb, which is ignored. Line 
6 also adds text to the end of sb and returns a reference to sb. This time the reference is 
stored in same—which means sb and same point to the exact same object and would print 
out the same value.

The exam won’t always make the code easy to read by only having one method per line. 
What do you think this example prints?

4: StringBuilder a = new StringBuilder("abc");

5: StringBuilder b = a.append("de");



c03.indd 1½  4/2014 Page 113

6: b = b.append("f").append("g");

7: System.out.println("a=" + a);

8: System.out.println("b=" + b);

Did you say both print "abcdefg"? Good. There’s only one StringBuilder object 
here. We know that because new StringBuilder() was called only once. On line 5, there 
are two variables referring to that object, which has a value of "abcde". On line 6, those 
two variables are still referring to that same object, which now has a value of "abcdefg". 
Incidentally, the assignment back to b does absolutely nothing. b is already pointing to that 
StringBuilder.

Creating a StringBuilder
There are three ways to construct a StringBuilder:

StringBuilder sb1 = new StringBuilder();

StringBuilder sb2 = new StringBuilder("animal");

StringBuilder sb3 = new StringBuilder(10);

The fi rst says to create a StringBuilder containing an empty sequence of characters and 
assign sb1 to point to it. The second says to create a StringBuilder containing a specifi c 
value and assign sb2 to point to it. For the fi rst two, it tells Java to manage the implementa-
tion details. The fi nal example tells Java that we have some idea of how big the eventual value 
will be and would like the StringBuilder to reserve a certain number of slots for characters.

Size vs. Capacity

The behind-the-scenes process of how objects are stored isn’t on the exam, but some 

knowledge of this process may help you better understand and remember String-

Builder.

Size is the number of characters currently in the sequence, and capacity is the number 

of characters the sequence can currently hold. Since a String is immutable, the size and 

capacity are the same. The number of characters appearing in the String is both the size 

and capacity. 

For StringBuilder, Java knows the size is likely to change as the object is used. When 

StringBuilder is constructed, it may start at the default capacity (which happens to be 

16) or one of the programmer’s choosing. In the example, we request a capacity of 5. At 

this point, the size is 0 since no characters have been added yet, but we have space for 5.

Using the StringBuilder Class 113

continues



114 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 114

Next we add four characters. At this point, the size is 4 since four slots are taken. The 

capacity is still 5. Then we add three more characters. The size is now 7 since we have 

used up seven slots. Because the capacity wasn’t large enough to store seven characters, 

Java automatically increased it for us.

0 1 2 3 4

a n i m

0 1 2 3 4

a n i m a sl

0 1 2 3 4 65 …7

StringBuilder sb = new StringBuilder(5);

sb.append("anim");

sb.append("als");

Important StringBuilder Methods
As with String, we aren’t going to cover every single method in the StringBuilder class. 
These are the ones you might see on the exam.

charAt(), indexOf(), length(), and substring()
These four methods work exactly the same as in the String class. Be sure you can identify 
the output of this example:

StringBuilder sb = new StringBuilder("animals");

String sub = sb.substring(sb.indexOf("a"), sb.indexOf("al"));

int len = sb.length();

char ch = sb.charAt(6);

System.out.println(sub + " " + len + " " + ch);

The correct answer is anim 7 s. The indexOf()method calls return 0 and 4, respectively. 
substring() returns the String starting with index 0 and ending right before index 4.

length() returns 7 because it is the number of characters in the StringBuilder rather 
than an index. Finally, charAt() returns the character at index 6. Here we do start with 0 
because we are referring to indexes. If any of this doesn’t sound familiar, go back and read 
the section on String again.

(continued)



c03.indd 1½  4/2014 Page 115

Notice that substring() returns a String rather than a StringBuilder. That is why sb 
is not changed. substring() is really just a method that inquires about where the substring 
happens to be.

append()
The append() method is by far the most frequently used method in StringBuilder. In fact, 
it is so frequently used that we just started using it without comment. Luckily, this method 
does just what it sounds like: it adds the parameter to the StringBuilder and returns a ref-
erence to the current StringBuilder. One of the method signatures is as follows:

StringBuilder append(String str)

Notice that we said one of the method signatures. There are more than 10 method signa-
tures that look similar but that take different data types as parameters. All those methods 
are provided so you can write code like this:

StringBuilder sb = new StringBuilder().append(1).append('c');

sb.append("-").append(true);

System.out.println(sb);      // 1c-true

Nice method chaining, isn’t it? append() is called directly after the constructor. By hav-
ing all these method signatures, you can just call append() without having to convert your 
parameter to a String fi rst.

insert()
The insert() method adds characters to the StringBuilder at the requested index and 
returns a reference to the current StringBuilder. Just like append(), there are lots of 
method signatures for different types. Here’s one:

StringBuilder insert(int offset, String str)

Pay attention to the offset in these examples. It is the index where we want to insert the 
requested parameter.

3: StringBuilder sb = new StringBuilder("animals");     

4: sb.insert(7, "-");                   // sb = animals-

5: sb.insert(0, "-");                   // sb = -animals-

6: sb.insert(4, "-");                   // sb = -ani-mals

7: System.out.println(sb);

Line 4 says to insert a dash at index 7, which happens to be the end of sequence of char-
acters. Line 5 says to insert a dash at index 0, which happens to be the very beginning. 
Finally, line 6 says to insert a dash right before index 4. The exam creators will try to trip 
you up on this. As we add and remove characters, their indexes change. When you see a 
question dealing with such operations, draw what is going on so you won’t be confused.

Using the StringBuilder Class 115



116 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 116

delete() and deleteCharAt()
The delete() method is the opposite of the insert() method. It removes characters from 
the sequence and returns a reference to the current StringBuilder. The deleteCharAt() 
method is convenient when you want to delete only one character. The method signatures 
are as follows:

StringBuilder delete(int start, int end)

StringBuilder deleteCharAt(int index)

The following code shows how to use these methods:

StringBuilder sb = new StringBuilder("abcdef");

sb.delete(1, 3);                  // sb = adef

sb.deleteCharAt(5);                   // throws an exception

First, we delete the characters starting with index 1 and ending right before index 3. This 
gives us adef. Next, we ask Java to delete the character at position 5. However, the remain-
ing value is only four characters long, so it throws a StringIndexOutOfBoundsException. 

reverse()
After all that, it’s time for a nice, easy method. The reverse() method does just what it 
sounds like: it reverses the characters in the sequences and returns a reference to the current 
StringBuilder. The method signature is as follows:

StringBuilder reverse()

The following code shows how to use this method:

StringBuilder sb = new StringBuilder("ABC");

sb.reverse();

System.out.println(sb);

As expected, this prints CBA. This method isn’t that interesting. Maybe the exam creators 
like to include it to encourage you to write down the value rather than relying on memory 
for indexes.

toString()
The last method converts a StringBuilder into a String. The method signature is as 
follows:

String toString()

The following code shows how to use this method:

String s = sb.toString();



Understanding Equality 117

c03.indd 1½  4/2014 Page 117

Often StringBuilder is used internally for performance purposes but the end result 
needs to be a String. For example, maybe it needs to be passed to another method that is 
expecting a String.

StringBuilder vs. StringBuffer
When writing new code that concatenates a lot of String objects together, you should 
use StringBuilder. StringBuilder was added to Java in Java 5. If you come across older 
code, you will see StringBuffer used for this purpose. StringBuffer does the same thing 
but more slowly because it is thread safe. You’ll learn about threads for the OCP exam. In 
theory, you don’t need to know about StringBuffer on the exam at all. However, we bring 
this up anyway, since an older question might still be left on the exam.

Understanding Equality

In Chapter 2, you learned how to use == to compare numbers and that object references 
refer to the same object.

StringBuilder one = new StringBuilder();

StringBuilder two = new StringBuilder();

StringBuilder three = one.append("a");

System.out.println(one == two); // false

System.out.println(one == three); // true

Since this example isn’t dealing with primitives, we know to look for whether the 
references are referring to the same object. one and two are both completely separate 
StringBuilders, giving us two objects. Therefore, the fi rst print statement gives us false. 
three is more interesting. Remember how StringBuilder methods like to return the cur-
rent reference for chaining? This means one and three both point to the same object and 
the second print statement gives us true.

Let’s now visit the more complex and confusing scenario, String equality, made so in 
part because of the way the JVM reuses String literals:

String x = "Hello World";

String y = "Hello World";

System.out.println(x == y);    // true

Remember that Strings are immutable and literals are pooled. The JVM created only 
one literal in memory. x and y both point to the same location in memory; therefore, the 
statement outputs true. It gets even trickier. Consider this code:

String x = "Hello World";

String z = " Hello World".trim();

System.out.println(x == z); // false



118 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 118

In this example, we don’t have two of the same String literal. Although x and z hap-
pen to evaluate to the same string, one is computed at runtime. Since it isn’t the same at 
compile-time, a new String object is created.

You can even force the issue by creating a new String:

String x = new String("Hello World");

String y = "Hello World";

System.out.println(x == y); // false

Since you have specifi cally requested a different String object, the pooled value isn’t 
shared.

The lesson is to never use == to compare String objects. The only time 
you should have to deal with == for Strings is on the exam.

You saw earlier that you can say you want logical equality rather than object equality 
for String objects:

String x = "Hello World";

String z = " Hello World".trim();

System.out.println(x.equals(z)); // true

This works because the authors of the String class implemented a standard method 
called equals to check the values inside the String rather than the String itself. If a 
class doesn’t have an equals method, Java determines whether the references point to the 
same object—which is exactly what == does. In case you are wondering, the authors of 
StringBuilder did not implement equals(). If you call equals() on two StringBuilder 
instances, it will check reference equality.

The exam will test you on your understanding of equality with objects they defi ne too. 
For example:

1: public class Tiger {

2:   String name;

3:   public static void main(String[] args) {

4:     Tiger t1 = new Tiger();

5:     Tiger t2 = new Tiger();

6:     Tiger t3 = t1;

7:     System.out.println(t1 == t1); // true

8:     System.out.println(t1 == t2); // false

9:     System.out.println(t1.equals(t2)); // false

10:  } }

The fi rst two statements check object reference equality. Line 7 prints true because we 
are comparing references to the same object. Line 8 prints false because the two object 



Understanding Java Arrays 119

c03.indd 1½  4/2014 Page 119

references are different. Line 9 prints false since Tiger does not implement equals(). 
Don’t worry—you aren’t expected to know how to implement equals() for the OCA exam.

Understanding Java Arrays

Up to now, we’ve been referring to the String and StringBuilder classes as a “sequence of 
characters.” This is true. They are implemented using an array of characters. An array is an 
area of memory on the heap with space for a designated number of elements. A String is 
implemented as an array with some methods that you might want to use when dealing with 
characters specifi cally. A StringBuilder is implemented as an array where the array object is 
replaced with a new bigger array object when it runs out of space to store all the characters. A 
big difference is that an array can be of any other Java type. If we didn’t want to use a String 
for some reason, we could use an array of char primitives directly:

char[] letters;

This wouldn’t be very convenient because we’d lose all the special properties String 
gives us, such as writing “Java”. Keep in mind that letters is a reference variable and not 
a primitive. char is a primitive. But char is what goes into the array and not the type of the 
array itself. The array itself is of type char[]. You can mentally read the brackets ([]) as 
“array.”

In other words, an array is an ordered list. It can contain duplicates. You will learn 
about data structures that cannot contain duplicates for the OCP exam. In this section, 
we’ll look at creating an array of primitives and objects, sorting, searching, varargs, and 
multidimensional arrays.

Creating an Array of Primitives
The most common way to create an array looks like this:

int[] numbers1 = new int[3];

The basic parts are shown in Figure 3.2. It specifi es the type of the array (int) and the 
size (3). The brackets tell you this is an array. 

F I GU R E 3 . 2   The basic structure of an array

int[] numbers = new int[3];

Type of array
Array symbol (required)

Size of array



120 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 120

When using this form to instantiate an array, set all the elements to the default value for 
that type. As you learned in Chapter 1, the default value of an int is 0. Since numbers1 is a 
reference variable, it points to the array object, as shown in Figure 3.3. As you can see, the 
default value for all the elements is 0. Also, the indexes start with 0 and count up, just as 
they did for a String. 

F I GU R E 3 . 3   An empty array

0element:

numbers1

index:

0 0

0 1 2

Another way to create an array is to specify all the elements it should start out with:

int[] numbers2 = new int[] {42, 55, 99};

In this example, we also create an int array of size 3. This time, we specify the initial 
values of those three elements instead of using the defaults. Figure 3.4 shows what this 
array looks like.

F I GU R E 3 . 4   An initialized array

42element:

numbers2

index:

55 99

0 1 2

Java recognizes that this expression is redundant. Since you are specifying the type of 
the array on the left side of the equal sign, Java already knows the type. And since you 
are specifying the initial values, it already knows the size. As a shortcut, Java lets you 
write this:

int[] numbers2 = {42, 55, 99};

This approach is called an anonymous array. It is anonymous because you don’t specify 
the type and size.

Finally, you can type the [] before or after the name, and adding a space is optional. 
This means that all four of these statements do the exact same thing:

int[] numAnimals;

int [] numAnimals2;

int numAnimals3[];

int numAnimals4 [];



Understanding Java Arrays 121

c03.indd 1½  4/2014 Page 121

Most people use the fi rst one. You could see any of these on the exam, though, so get 
used to seeing the brackets in odd places.

Multiple “Arrays” in Declarations

What types of reference variables do you think the following code creates?

int[] ids, types;

The correct answer is two variables of type int[]. This seems logical enough. After all, 

int a, b; created two int variables. What about this example?

int ids[], types;

All we did was move the brackets, but it changed the behavior. This time we get one vari-

able of type int[] and one variable of type int. Java sees this line of code and thinks 

something like this: “They want two variables of type int. The fi rst one is called ids[]. 

This one is a int[] called ids. The second one is just called types. No brackets, so it is a 

regular integer.”

Needless to say, you shouldn’t write code that looks like this. But you do still need to 

understand it for the exam.

Creating an Array with Reference Variables
You can choose any Java type to be the type of the array. This includes classes you create 
yourself. Let’s take a look at a built-in type with String:

public class ArrayType {

  public static void main(String args[]) {

    String [] bugs = { "cricket", "beetle", "ladybug" };

    String [] alias = bugs;

    System.out.println(bugs.equals(alias));     // true

    System.out.println(bugs.toString()); // [Ljava.lang.String;@160bc7c0

} }

We can call equals() because an array is an object. It returns true because of refer-
ence equality. The equals() method on arrays does not look at the elements of the array. 
Remember, this would work even on an int[] too. int is a primitive; int[] is an object.

The second print statement is even more interesting. What on earth is [Ljava.lang
.String;@160bc7c0? You don’t have to know this for the exam, but [L means it is an array, 
java.lang.String is the reference type, and 160bc7c0 is the hash code.



122 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 122

Since Java 5, Java has provided a method that prints an array nicely: java
.util.Arrays.toString(bugs) would print [cricket, beetle, lady-
bug]. The exam tends not to use it because most of the questions on 
arrays were written a long time ago. Regardless, this is a useful method 
when testing your own code.

Make sure you understand Figure 3.5. The array does not allocate space for the String 
objects. Instead, it allocates space for a reference to where the objects are really stored.

F I GU R E 3 .5   An array pointing to strings

0

bugs

“beetle”

“cricket” “ladybug”

1 2

As a quick review, what do you think this array points to?

class Names {

  String names[];

}

You got us. It was a review of Chapter 1 and not our discussion on arrays. The answer 
is null. The code never instantiated the array so it is just a reference variable to null. Let’s 
try that again—what do you think this array points to?

class Names {

  String names[] = new String[2];

}

It is an array because it has brackets. It is an array of type String since that is the type 
mentioned in the declaration. It has two elements because the length is 2. Each of those two 
slots currently is null, but has the potential to point to a String object.

Remember casting from the previous chapter when you wanted to force a bigger type 
into a smaller type? You can do that with arrays too:

3: String[] strings = { "stringValue" };

4: Object[] objects = strings;

5: String[] againStrings = (String[]) objects;

6: againStrings[0] = new StringBuilder();   // DOES NOT COMPILE

7: objects[0] = new StringBuilder();        // careful!



Understanding Java Arrays 123

c03.indd 1½  4/2014 Page 123

Line 3 creates an array of type String. Line 4 doesn’t require a cast because Object is 
a broader type than String. On line 5, a cast is needed because we are moving to a more 
specifi c type. Line 6 doesn’t compile because a String[] only allows String objects and 
StringBuilder is not a String. 

Line 7 is where this gets interesting. From the point of view of the compiler, this is just 
fi ne. A StringBuilder object can clearly go in an Object[]. The problem is that we don’t 
actually have an Object[]. We have a String[] referred to from an Object[] variable. At 
runtime, the code throws an ArrayStoreException. You don’t need to memorize the name 
of this exception, but you do need to know that the code will throw an exception.

Using an Array
Now that we know how to create an array, let’s try accessing one:

4: String[] mammals = {"monkey", "chimp", "donkey"};

5: System.out.println(mammals.length);           // 3

6: System.out.println(mammals[0]);               // monkey

7: System.out.println(mammals[1]);               // chimp

8: System.out.println(mammals[2]);               // donkey

Line 4 declares and initializes the array. Line 5 tells us how many elements the array 
can hold. The rest of the code prints the array. Notice elements are indexed starting with 0. 
This should be familiar from String and StringBuilder, which also start counting with 0. 
Those classes also counted length as the number of elements.

To make sure you understand how length works, what do you think this prints?

String[] birds = new String[6];

System.out.println(birds.length);

The answer is 6. Even though all 6 elements of the array are null, there are still 6 of 
them. length does not consider what is in the array; it only considers how many slots have 
been allocated.

It is very common to use a loop when reading from or writing to an array. This loop sets 
each element of number to 5 higher than the current index:

5: int[] numbers = new int[10];

6: for (int i = 0; i < numbers.length; i++) 

7:  numbers[i] = i + 5;

Line 5 simply instantiates an array with 10 slots. Line 6 is a for loop using an extremely 
common pattern. It starts at index 0, which is where an array begins as well. It keeps going, 
one at a time, until it hits the end of the array. Line 7 sets the current element of numbers.

The exam will test whether you are being observant by trying to access elements that are 
not in the array. Can you tell why each of these throws an ArrayIndexOutOfBoundsException 
for our array of size 10?



124 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 124

numbers[10] = 3;

numbers[numbers.length] = 5;

for (int i = 0; i <= numbers.length; i++) numbers[i] = i + 5;

The fi rst one is trying to see if you know that indexes start with 0. Since we have 10 ele-
ments in our array, this means only numbers[0] through numbers[9] are valid. The second 
example assumes you are clever enough to know 10 is invalid and disguises it by using the 
length variable. However, the length is always one more than the maximum valid index. 
Finally, the for loop incorrectly uses <= instead of <, which is also a way of referring to that 
10th element.

Sorting
Java makes it easy to sort an array by providing a sort method—or rather, a bunch of sort 
methods. Just like StringBuilder allowed you to pass almost anything to append(), you 
can pass almost any array to Arrays.sort(). 

Arrays is the fi rst class provided by Java we have used that requires an import. To use it, 
you must have either of the following two statements in your class:

import java.util.*           // import whole package including Arrays

import java.util.Arrays;     // import just Arrays

There is one exception, although it doesn’t come up often on the exam. You can write 
java.util.Arrays every time it is used in the class instead of specifying it as an import.

Remember that if you are shown a code snippet with a line number that doesn’t begin 
with 1, you can assume the necessary imports are there. Similarly, you can assume the 
imports are present if you are shown a snippet of a method.

This simple example sorts three numbers:

int[] numbers = { 6, 9, 1 };

Arrays.sort(numbers);

for (int i = 0; i < numbers.length; i++) 

L  System.out.print (numbers[i] +  " ");

The result is 1 6 9, as you should expect it to be. Notice that we had to loop through 
the output to print the values in the array. Just printing the array variable directly would 
give the annoying hash of [I@2bd9c3e7.

Try this again with String types:

String[] strings = { "10", "9", "100" };

Arrays.sort(strings);

for (String string : strings)

  System.out.print(string + " ");



Understanding Java Arrays 125

c03.indd 1½  4/2014 Page 125

This time the result might not be what you expect. This code outputs 10 100 9. The 
problem is that String sorts in alphabetic order, and 1 sorts before 9. (Numbers sort before 
letters and uppercase sorts before lowercase, in case you were wondering.) For the OCP 
exam, you’ll learn how to create custom sort orders using something called a comparator.

Did you notice we snuck in the enhanced for loop in this example? Since we aren’t using 
the index, we don’t need the traditional for loop. That won’t stop the exam creators from 
using it, though, so we’ll be sure to use both to keep you sharp!

Searching
Java also provides a convenient way to search—but only if the array is already sorted. 
Table 3.1 covers the rules for binary search. 

TA B LE 3 .1   Binary search rules

Scenario Result

Target element found in sorted 
array

Index of match

Target element not found in 
sorted array

Negative value showing one smaller than the 
 negative of index, where a match needs to be 
inserted to preserve sorted order

Unsorted array A surprise—this result isn’t predictable

Let’s try out these rules with an example:

3: int[] numbers = {2,4,6,8};

4: System.out.println(Arrays.binarySearch(numbers, 2)); // 0

5: System.out.println(Arrays.binarySearch(numbers, 4)); // 1

6: System.out.println(Arrays.binarySearch(numbers, 1)); // -1

7: System.out.println(Arrays.binarySearch(numbers, 3)); // -2

8: System.out.println(Arrays.binarySearch(numbers, 9)); // -5

Take note of the fact that line 3 is a sorted array. If it weren’t, we couldn’t apply either 
of the other rules. Line 4 searches for the index of 2. The answer is index 0. Line 5 searches 
for the index of 4, which is 1.

Line 5 searches for the index of 1. Although 1 isn’t in the list, the search can determine 
that it should be inserted at element 0 to preserve the sorted order. Since 0 already means 
something for array indexes, Java needs to subtract 1 to give us the answer of –1. Line 7 
is similar. Although 3 isn’t in the list, it would need to be inserted at element 1 to preserve 
the sorted order. We negate and subtract 1 for consistency, getting –1 –1, also known as 
–2. Finally, line 8 wants to tell us that 9 should be inserted at index 4. We again negate and 
subtract 1, getting –4 –1, also known as –5.



126 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 126

What do you think happens in this example?

5: int numbers = new int[] {3,2,1};

6: System.out.println(Arrays.binarySearch(numbers, 2)); 

7: System.out.println(Arrays.binarySearch(numbers, 3));

Note that on line 5, the array isn’t sorted. This means the output will not be predictable. 
When testing this example, line 6 correctly gave 1 as the output. However, line 3 gave the 
wrong answer. The exam creators will not expect you to know what incorrect values come 
out. As soon as you see the array isn’t sorted, look for an answer choice about unpredict-
able output.

On the exam, you need to know what a binary search returns in various scenarios. 
Oddly, you don’t need to know why “binary” is in the name. In case you are curious, a 
binary search splits the array into two equal pieces (remember 2 is binary) and determines 
which half the target it is. It repeats this process until only one element is left.

Varargs
When creating an array yourself, it looks like what we’ve seen thus far. When one is passed 
to your method, there is another way it can look. Here are three examples with a main() 
method:

public static void main(String[] args) 

public static void main(String args[]) 

public static void main(String... args) // varargs

The third example uses a syntax called varargs (variable arguments), which you saw in 
Chapter 1. You’ll learn how to call a method using varargs in Chapter 4, “Methods and 
Encapsulation.” For now, all you need to know is that you can use a variable defi ned using 
varargs as if it were a normal array. For example args.length and args[0] are legal.

Multidimensional Arrays
Arrays are objects, and of course array components can be objects. It doesn’t take much 
time, rubbing those two facts together, to wonder if arrays can hold other arrays, and of 
course they can. 

Creating a Multidimensional Array
Multiple array separators are all it takes to declare arrays with multiple dimensions. You 
can locate them with the type or variable name in the declaration, just as before: 

int[][] vars1;          // 2D array

int vars2 [][];         // 2D array

int[] vars3[];          // 2D array

int[] vars4 [], space [][];  // a 2D AND a 3D array



Understanding Java Arrays 127

c03.indd 1½  4/2014 Page 127

The fi rst two examples are nothing surprising and declare a two-dimensional (2D) array. 
The third example also declares a 2D array. There’s no good reason to use this style other 
than to confuse readers of your code. The fi nal example declares two arrays on the same 
line. Adding up the brackets, we see that the vars4 is a 2D array and space is a 3D array. 
Again, there’ no reason to use this style other than to confuse readers of your code. The 
exam creators like to try to confuse you, though. Luckily you are on to them and won’t let 
this happen to you!

You can specify the size of your multidimensional array in the declaration if you like: 

String [][] rectangle = new String[3][2];

The result of this statement is an array rectangle with three elements, each of which 
refers to an array of two elements. You can think of the addressable range as [0][0] through 
[2][1], but don’t think of it as a structure of addresses like [0,0] or [2,1]. 

Now suppose we set one of these values:

rectangle[0][1] = "set";     

You can visualize the result as shown in Figure 3.6. This array is sparsely populated 
because it has a lot of null values. You can see that rectangle still points to an array of 
three elements and that we have three arrays of two elements. You can also follow the trail 
from reference to the one value pointing to a String. First you start at index 0 in the top 
array. Then you go to index 1 in the next array.

F I GU R E 3 .6   A sparsely populated multidimensional array

0

rectangle

“set”

1

0

1

0

1

0

1

2

While that array happens to be rectangular in shape, an array doesn’t need to be. 
Consider this one:

int[][] differentSize = {{1, 4}, {3}, {9,8,7}};

We still start with an array of three elements. However, this time the elements in the 
next level are all different sizes. One is of length 2, the next length 1, and the last length 3 
(see Figure 3.7). This time the array is of primitives, so they are shown as if they are in the 
array themselves.



128 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 128

F I GU R E 3 .7   An asymmetric multidimensional array

0

differentSizes

1

1

4

0

1

0

1

9

8

2 7

0 3

2

Another way to create an asymmetric array is to initialize just an array’s fi rst dimension, 
and defi ne the size of each array component in a separate statement: 

int [][] args = new int[4][];

args[0] = new int[5];

args[1] = new int[3];

This technique reveals what you really get with Java: arrays of arrays that, properly 
managed, offer a multidimensional effect. 

Using a Multidimensional Array
The most common operation on a multidimensional array is to loop through it. This example 
prints out a 2D array:

int[][] twoD = new int[3][2];

for (int i = 0; i < twoD.length; i++) {

  for (int j = 0; j < twoD[i].length; j++)

    System.out.print(twoD[i][j] + " "); // print element

  System.out.println();                 // time for a new row

}

We have two loops here. The fi rst uses index i and goes through the fi rst subarray for 
twoD. The second uses a different loop variable j. It is very important these be different 
variable names so the loops don’t get mixed up. The inner loop looks at how many elements 
are in the second-level array. The inner loop prints the element and leaves a space for read-
ability. When the inner loop completes, the outer loop goes to a new line and repeats the 
process for the next element.

This entire exercise would be easier to read with the enhanced for loop.

for (int[] inner : twoD) {

  for (int num : inner)



c03.indd 1½  4/2014 Page 129

    System.out.print(num + " ");

   System.out.println();

}

We’ll grant you that it isn’t fewer lines, but each line is less complex and there aren’t any 
loop variables or terminating conditions to mix up.

Understanding an ArrayList

An array has one glaring shortcoming: you have to know how many elements will be in the 
array when you create it and then you are stuck with that choice. Just like a StringBuilder, 
ArrayList can change size at runtime as needed. Like an array, an ArrayList is an ordered 
sequence that allows duplicates.

As when we used Arrays.sort, ArrayList requires an import. To use it, you must have 
either of the following two statements in your class:

import java.util.*          // import whole package including ArrayList

import java.util.ArrayList; // import just ArrayList

Remember that if you are shown a code snippet with a line number that doesn’t begin 
with 1, you can assume the necessary imports are there. Similarly, you can assume the 
imports are present if you are shown a snippet of a method.

In this section, we’ll look at creating an ArrayList, common methods, autoboxing, 
conversion, and sorting.

Experienced programmers, take note: This section is simplifi ed and doesn’t cover a 
number of topics that are out of scope for the OCA exam. 

Creating an ArrayList
As with StringBuilder, there are three ways to create an ArrayList:

ArrayList list1 = new ArrayList();

ArrayList list2 = new ArrayList(10);

ArrayList list3 = new ArrayList(list2);

The fi rst says to create an ArrayList containing space for the default number of 
elements but not to fi ll any slots yet. The second says to create an ArrayList containing a 
specifi c number of slots, but again not to assign any. The fi nal example tells Java that we 
want to make a copy of another ArrayList. We copy both the size and contents of that 
ArrayList. Granted, list2 is empty in this example so it isn’t particularly interesting.

Although these are the only three constructors you need to know, you do need to learn 
some variants of it. The previous examples were the old pre–Java 5 way of creating an 
ArrayList. They still work and you still need to know they work. You also need to know 

Understanding an ArrayList 129



130 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 130

the new and improved way. Java 5 introduced generics, which allow you to specify the type 
of class that the ArrayList will contain.

ArrayList<String> list4 = new ArrayList<String>();

ArrayList<String> list5 = new ArrayList<>();

Java 5 allows you to tell the compiler what the type would be by specifying it between < 
and >. Starting in Java 7, you can even omit that type from the right side. The < and > are 
still required, though. This is called the diamond operator because <> looks like a diamond.

Just when you thought you knew everything about creating an ArrayList, there is one 
more thing you need to know. ArrayList implements an interface called List. In other 
words, an ArrayList is a List. You will learn about interfaces in Chapter 5. In the mean-
time, just know that you can store an ArrayList in a List reference variable but not vice 
versa. The reason is that List is an interface and interfaces can’t be instantiated.

List<String> list6 = new ArrayList<>();

ArrayList<String> list7 = new List<>(); // DOES NOT COMPILE

Using an ArrayList
ArrayList has many methods, but you only need to know a handful of them—even fewer 
than you did for String and StringBuilder.

Before reading any further, you are going to see something new in the method signatures: 
a “class” named E. Don’t worry—it isn’t really a class. E is used by convention in generics 
to mean “any class that this array can hold.” If you didn’t specify a type when creating the 
ArrayList, E means Object. Otherwise, it means the class you put between < and >.

You should also know that ArrayList implements toString() so you can easily see the 
contents just by printing it. Arrays do not do produce such pretty output.

add()
The add() methods insert a new value in the ArrayList. The method signatures are as 
follows:

boolean add(E element)

void add(int index, E element)

Don’t worry about the boolean return value. It always returns true. It is there because 
other classes in the collections family need a return value in the signature when adding an 
element.

Since add() is the most critical ArrayList method you need to know for the exam, we are 
going to show a few sets of examples for it. Let’s start with the most straightforward case:

ArrayList list = new ArrayList();

list.add("hawk");          // [hawk]



c03.indd 1½  4/2014 Page 131

list.add(Boolean.TRUE);    // [hawk, true]

System.out.println(list);  // [hawk, true]

add() does exactly what we expect: it stores the String in the no longer empty 
ArrayList. It then does the same thing for the boolean. This is okay because we didn’t 
specify a type for ArrayList; therefore, the type is Object, which includes everything 
except primitives. It may not have been what we intended, but the compiler doesn’t know 
that. Now, let’s use generics to tell the compiler we only want to allow String objects in 
our ArrayList:

ArrayList<String> safer = new ArrayList<>();

safer.add("sparrow");

safer.add(Boolean.TRUE);    // DOES NOT COMPILE

This time the compiler knows that only String objects are allowed in and prevents the 
attempt to add a boolean. Now let’s try adding multiple values to different positions.

4: List<String> birds = new ArrayList<>();

5: birds.add("hawk");            // [hawk]

6: birds.add(1, "robin");        // [hawk, robin]

7: birds.add(0, "blue jay");     // [blue jay, hawk, robin]

8: birds.add(1, "cardinal");     // [blue jay, cardinal, hawk, robin]

9: System.out.println(birds);    // [blue jay, cardinal, hawk, robin]

When a question has code that adds objects at indexed positions, draw it so that you 
won’t lose track of which value is at which index. In this example, line 5 adds "hawk" to the 
end of birds. Then line 6 adds "robin" to index 1 of birds, which happens to be the end. 
Line 7 adds "blue jay" to index 0, which happens to be the beginning of birds. Finally, 
line 8 adds "cardinal” to index 1, which is now near the middle of birds.

remove()
The remove() methods remove the fi rst matching value in the ArrayList or remove the 
element at a specifi ed index. The method signatures are as follows:

boolean remove(Object object)

E remove(int index)

This time the boolean return value tells us whether a match was removed. The E return 
type is the element that actually got removed. The following shows how to use these 
methods:

3: List<String> birds = new ArrayList<>();

4: birds.add("hawk");     // [hawk]

5: birds.add("hawk");     // [hawk, hawk]

6: System.out.println(birds.remove("cardinal")); // prints false

7: System.out.println(birds.remove("hawk")); // prints true

Understanding an ArrayList 131



132 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 132

8: System.out.println(birds.remove(0)); // prints hawk

9: System.out.println(birds);     // []

Line 6 tries to remove an element that is not in birds. It returns false because no such 
element is found. Line 7 tries to remove an element that is in birds and so returns true. 
Notice that it removes only one match. Line 8 removes the element at index 0, which is the 
last remaining element in the ArrayList.

Since calling remove() with an int uses the index, an index that doesn’t exist will throw 
an exception. For example, birds.remove(100) throws an IndexOutOfBoundsException.

There is also a removeIf() method. We’ll cover it in the next chapter because it uses 
lambda expressions (a topic in that chapter).

set()
The set() method changes one of the elements of the ArrayList without changing the size. 
The method signature is as follows:

E set(int index, E newElement)

The E return type is the element that got replaced. The following shows how to use this 
method:

15: List<String> birds = new ArrayList<>();

16: birds.add("hawk");                    // [hawk]

17: System.out.println(birds.size());     // 1

18: birds.set(0, "robin");               // [robin]

19: System.out.println(birds.size());     // 1

20: birds.set(1, "robin");               // IndexOutOfBoundsException

Line 16 adds one element to the array, making the size 1. Line 18 replaces that one ele-
ment and the size stays at 1. Line 20 tries to replace an element that isn’t in the ArrayList. 
Since the size is 1, the only valid index is 0. Java throws an exception because this isn’t 
allowed.

isEmpty() and size()
The isEmpty() and size() methods look at how many of the slots are in use. The method 
signatures are as follows:

boolean isEmpty()

int size()

The following shows how to use these methods:

System.out.println(birds.isEmpty());     // true

System.out.println(birds.size());     // 0

birds.add("hawk");                    // [hawk]

birds.add("hawk");                    // [hawk, hawk]



c03.indd 1½  4/2014 Page 133

System.out.println(birds.isEmpty());     // false

System.out.println(birds.size());     // 2

At the beginning, birds has a size of 0 and is empty. It has a capacity that is greater 
than 0. However, as with StringBuilder, we don’t use the capacity in determining size or 
length. After adding elements, the size becomes positive and it is no longer empty.

clear()
The clear() method provides an easy way to discard all elements of the ArrayList. The 
method signature is as follows:

void clear()

The following shows how to use this method:

List<String> birds = new ArrayList<>();

birds.add("hawk");                    // [hawk]

birds.add("hawk");                    // [hawk, hawk]

System.out.println(birds.isEmpty());     // false

System.out.println(birds.size());     // 2

birds.clear();                         // []

System.out.println(birds.isEmpty());     // true

System.out.println(birds.size());     // 0

After we call clear(), birds is back to being an empty ArrayList of size 0.

contains()
The contains() method checks whether a certain value is in the ArrayList. The method 
signature is as follows:

boolean contains(Object object)

The following shows how to use this method:

List<String> birds = new ArrayList<>();

birds.add("hawk");                         // [hawk]

System.out.println(birds.contains("hawk")); // true

System.out.println(birds.contains("robin")); // false

This method calls equals() on each element of the ArrayList to see whether there are 
any matches. Since String implements equals(), this works out well.

equals()
Finally, ArrayList has a custom implementation of equals() so you can compare two lists 
to see if they contain the same elements in the same order.

boolean equals(Object object)

Understanding an ArrayList 133



134 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 134

The following shows an example:

31: List<String> one = new ArrayList<>();

32: List<String> two = new ArrayList<>();

33: System.out.println(one.equals(two));      // true

34: one.add("a");                         // [a]

35: System.out.println(one.equals(two));     // false

36: two.add("a");                         // [a]

37: System.out.println(one.equals(two));     // true

38: one.add("b");                         // [a,b]

39: two.add(0, "b");                    // [b,a]

40: System.out.println(one.equals(two));     // false

On line 33, the two ArrayList objects are equal. An empty list is certainly the same 
elements in the same order. On line 35, the ArrayList objects are not equal because the size 
is different. On line 37, they are equal again because the same one element is in each. On 
line 40, they are not equal. The size is the same and the values are the same, but they are 
not in the same order.

Wrapper Classes
Up to now, we’ve only put String objects in the ArrayList. What happens if we want to 
put primitives in? Each primitive type has a wrapper class, which is an object type that 
corresponds to the primitive. Table 3.2 lists all the wrapper classes along with the 
constructor for each.

TA B LE 3 . 2   Wrapper classes

Primitive type Wrapper class Example of constructing

boolean Boolean new Boolean(true)

byte Byte new Byte((byte) 1)

short Short new Short((short) 1)

int Integer new Integer(1)

long Long new Long(1)

float Float new Float(1.0)

double Double new Double(1.0)

char Character new Character('c')



c03.indd 1½  4/2014 Page 135

The wrapper classes also have a method that converts back to a primitive. You don’t 
need to know much about the constructors or intValue() type methods for the exam 
because autoboxing has removed the need for them (see the next section). You might 
encounter this syntax on questions that have been on the exam for many years. However, 
you just need to be able to read the code and not look for tricks in it.

There are also methods for converting a String to a primitive or wrapper class. You do 
need to know these methods. The parse methods, such as parseInt(), return a primitive, 
and the valueOf() method returns a wrapper class. This is easy to remember because the 
name of the returned primitive is in the method name. For example:

int primitive = Integer.parseInt("123");

Integer wrapper = Integer.valueOf("123");

The fi rst line converts a String to an int primitive. The second converts a String to an 
Integer wrapper class. If the String passed in is not valid for the given type, Java throws 
an exception. In these examples, letters and dots are not valid for an integer value:

int bad1 = Integer.parseInt("a");               // throws NumberFormatException

Integer bad2 = Integer.valueOf("123.45");       // throws NumberFormatException

Before you worry, the exam won’t make you recognize that the method parseInt() 
is used rather than parseInteger(). You simply need to be able to recognize the meth-
ods when put in front of you. Also, the Character class doesn’t participate in the parse/
valueOf methods. Since a String is made up of characters, you can just call charAt() 
normally.

Table 3.3 lists the methods you need to recognize for creating a primitive or wrapper 
class object from a String. In real coding, you won’t be so concerned which is returned 
from each method due to autoboxing.

TA B LE 3 . 3   Converting from a String

Wrapper class Converting String to primitive
Converting String to 
wrapper class

Boolean Boolean.parseBoolean("true"); Boolean.valueOf("TRUE");

Byte Byte.parseByte("1"); Byte.valueOf("2");

Short Short.parseShort("1"); Short.valueOf("2");

Integer Integer.parseInt("1"); Integer.valueOf("2");

Long Long.parseLong("1"); Long.valueOf("2");

Float Float.parseFloat("1"); Float.valueOf("2.2");

Double Double.parseDouble("1"); Double.valueOf("2.2");

Character None None

Understanding an ArrayList 135



136 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 136

Autoboxing
Why won’t you need to be concerned with whether a primitive or wrapper class is returned, 
you ask? Since Java 5, you can just type the primitive value and Java will convert it to the 
relevant wrapper class for you. This is called autoboxing. Let’s look at an example:

4: List<Double> weights = new ArrayList<>();

5: weights.add(50.5);               // [50.5]

6: weights.add(new Double(60));     // [50.5, 60.0]

7: weights.remove(50.5);               // [60.0]

8: double first = weights.get(0);     // 60.0

Line 5 autoboxes the double primitive into a Double object and adds that to the List. 
Line 6 shows that you can still write code the long way and pass in a wrapper object. Line 
7 again autoboxes into the wrapper object and passes it to remove(). Line 8 retrieves the 
Double and unboxes it into a double primitive.

What do you think happens if you try to unbox a null? 

3: List<Integer> heights = new ArrayList<>();

4: heights.add(null);

5: int h = heights.get(0);          // NullPointerException

On line 4, we add a null to the list. This is legal because a null reference can be assigned 
to any reference variable. On line 5, we try to unbox that null to an int primitive. This is 
a problem. Java tries to get the int value of null. Since calling any method on null gives a 
NullPointerException, that is just what we get. Be careful when you see null in relation to 
autoboxing.

Be careful when autoboxing into Integer. What do you think this code outputs?

List<Integer> numbers = new ArrayList<>();

numbers.add(1);

numbers.add(2);

numbers.remove(1);

System.out.println(numbers);

It actually outputs 1. After adding the two values, the List contains [1, 2]. We then request 
the element with index 1 be removed. That’s right:  index 1. Because there’s already a remove() 
method that takes an int parameter, Java calls that method rather than autoboxing. If you 
want to remove the 2, you can write numbers.remove(new Integer(2)) to force wrapper 
class use.

Converting Between array and List
You should know how to convert between an array and an ArrayList. Let’s start with 
turning an ArrayList into an array:

3: List<String> list = new ArrayList<>();

4: list.add("hawk");



Understanding an ArrayList 137

c03.indd 1½  4/2014 Page 137

5: list.add("robin");

6: Object[] objectArray = list.toArray();

7: System.out.println(objectArray.length);     // 2

8: String[] stringArray = list.toArray(new String[0]);

9: System.out.println(stringArray.length);     // 2

Line 6 shows that an ArrayList knows how to convert itself to an array. The only prob-
lem is that it defaults to an array of class Object. This isn’t usually what you want. Line 8 
specifi es the type of the array and does what we actually want. The advantage of specifying 
a size of 0 for the parameter is that Java will create a new array of the proper size for the 
return value. If you like, you can suggest a larger array to be used instead. If the ArrayList 
fi ts in that array, it will be returned. Otherwise, a new one will be created.

Converting from an array to a List is more interesting. The original array and created 
array backed List are linked. When a change is made to one, it is available in the other. It 
is a fi xed-size list and is also known a backed List because the array changes with it. Pay 
careful attention to the values here:

20: String[] array = { "hawk", "robin" };     // [hawk, robin]

21: List<String> list = Arrays.asList(array); // returns fixed size list

22: System.out.println(list.size());     // 2

23: list.set(1, "test");          // [hawk, test]

24: array[0] = "new";               // [new, test]

25: for (String b : array) System.out.print(b + " "); // new test

26: list.remove(1);     // throws UnsupportedOperation Exception

Line 21 converts the array to a List. Note that it isn’t the java.util.ArrayList we’ve 
grown used to. It is a fi xed-size, backed version of a List. Line 23 is okay because set() 
merely replaces an existing value. It updates both array and list because they point to the 
same data store. Line 24 also changes both array and list. Line 25 shows the array has 
changed to new test. Line 26 throws an exception because we are not allowed to change 
the size of the list.

A Cool Trick with Varargs

This topic isn’t on the exam, but merging varargs with ArrayList conversion allows you 

to create an ArrayList in a cool way:

List<String> list = Arrays.asList("one", "two");

asList() takes varargs, which let you pass in an array or just type out the String values. 

This is handy when testing because you can easily create and populate a List on one line.



138 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 138

Sorting
Sorting an ArrayList is very similar to sorting an array. You just use a different helper class:

List<Integer> numbers = new ArrayList<>();

numbers.add(99);

numbers.add(5);

numbers.add(81);

Collections.sort(numbers);

System.out.println(numbers); [5, 81, 99]

As you can see, the numbers got sorted, just like you’d expect. Isn’t it nice to have some-
thing that works just like you think it will? 

Working with Dates and Times

In Java 8, Oracle completely revamped how we work with dates and times. You can still 
write code the “old way,” but those classes aren’t on the exam. We’ll mention the “old way” 
in real-world scenarios so that you can learn the “new way” more easily if you fi rst learned 
Java before version 8. Even if you are learning Java starting with version 8, this will help 
you when you need to read older code. Just know that the “old way” is not on the exam.

As with an ArrayList, you need an import statement to work with the date and time classes. 
Most of them are in the java.time package. To use it, add this import to your program:

import java.time.*;          // import time classes

In the following sections, we’ll look at creating, manipulating, and formatting dates and times.

Creating Dates and Times
In the real world, we usually talk about dates and time zones as if the other person is 
located near us. For example, if you say “I’ll call you at 11:00 on Tuesday morning,” we 
assume that 11:00 means the same thing to both of us. But if you live in New York and we 
live in California, you need to be more specifi c. California is three hours earlier than New 
York because the states are in different time zones. You would instead say, “I’ll call you at 
11:00 EST on Tuesday morning.” Luckily, the exam doesn’t cover time zones, so discussing 
dates and times is easier.

When working with dates and times, the fi rst thing to do is decide how much informa-
tion you need. The exam gives you three choices:

LocalDate  Contains just a date—no time and no time zone. A good example of 
LocalDate is your birthday this year. It is your birthday for a full day regardless of what 
time it is.



Working with Dates and Times 139

c03.indd 1½  4/2014 Page 139

LocalTime   Contains just a time—no date and no time zone. A good example of 
LocalTime is midnight. It is midnight at the same time every day.

LocalDateTime  Contains both a date and time but no time zone. A good example of 
LocalDateTime is “the stroke of midnight on New Year’s.” Midnight on January 2 isn’t 
nearly as special, and clearly an hour after midnight isn’t as special either.

Oracle recommends avoiding time zones unless you really need them. Try to act as if 
everyone is in the same time zone when you can. If you do need to communicate across 
time zones, ZonedDateTime handles them.

Ready to create your fi rst date and time objects? 

System.out.println(LocalDate.now());

System.out.println(LocalTime.now());

System.out.println(LocalDateTime.now());

Each of the three classes has a static method called now() that gives the current date and 
time. Your output is going to depend on what date/time you run it and where you live. The 
authors live in the United States, making the output look like the following when run on 
January 20 at 12:45 p.m.:

2015-01-20

12:45:18.401

2015-01-20T12:45:18.401

The key is to notice the type of information in the output. The fi rst one contains only a 
date and no time. The second contains only a time and no date. This time displays hours, 
minutes, seconds, and nanoseconds. The third contains both date and time. Java uses T to 
separate the date and time when converting LocalDateTime to a String.

Wait—I Don’t Live in the United States

The exam recognizes that exam takers live all over the world and will not ask you about 

the details of United States date and time formats.

In the United States, the month is written before the date. The exam won’t ask you about 

the difference between 02/03/2015 and 03/02/2015. That would be mean and not inter-

nationally friendly, and it would be testing your knowledge of United States dates rather 

than your knowledge of Java. That said, our examples do use United States date and time 

formats as will the questions on the exam. Just remember that the month comes before 

the date. Also, Java tends to use a 24-hour clock even though the United States uses a 

12-hour clock with a.m./p.m.



140 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 140

Now that you know how to create the current date and time, let’s look at other specifi c 
dates and times. To begin, let’s create just a date with no time. Both of these examples 
create the same date:

LocalDate date1 = LocalDate.of(2015, Month.JANUARY, 20);

LocalDate date2 = LocalDate.of(2015, 1, 20);

Both pass in the year, month, and date. Although it is good to use the Month constants 
(to make the code easier to read), you can pass the int number of the month directly. 
Just use the number of the month the same way you would if you were writing the date 
in real life.

The method signatures are as follows:

public static LocalDate of(int year, int month, int dayOfMonth)

public static LocalDate of(int year, Month month, int dayOfMonth)

Month is a special type of class called an enum. You don’t need to know about enums on 
the OCA exam and can just treat them as constants. 

Up to now, we’ve been like a broken record telling you that Java counts 
starting with 0. Well, months are an exception. For months in the new date 
and time methods, Java counts starting from 1 like we human beings do.

When creating a time, you can choose how detailed you want to be. You can specify just 
the hour and minute, or you can add the number of seconds. You can even add nanosec-
onds if you want to be very precise. (A nanosecond is a billionth of a second—you probably 
won’t need to be that specifi c.)

LocalTime time1 =  LocalTime.of(6, 15);               // hour and minute

LocalTime time2 =  LocalTime.of(6, 15, 30);          // + seconds

LocalTime time3 =  LocalTime.of(6, 15, 30, 200);     // + nanoseconds

These three times are all different but within a minute of each other. The method signa-
tures are as follows:

public static LocalTime of(int hour, int minute)

public static LocalTime of(int hour, int minute, int second)

public static LocalTime of(int hour, int minute, int second, int nanos)

Finally, we can combine dates and times:

LocalDateTime dateTime1 = LocalDateTime.of(2015, Month.JANUARY, 20, 6, 15, 30);

LocalDateTime dateTime2 = LocalDateTime.of(date1, time1);

The fi rst line of code shows how you can specify all the information about the 
LocalDateTime right in the same line. There are many method signatures allowing you 



Working with Dates and Times 141

c03.indd 1½  4/2014 Page 141

to specify different things. Having that many numbers in a row gets to be hard to read, 
though. The second line of code shows how you can create LocalDate and LocalTime 
objects separately fi rst and then combine them to create a LocalDateTime object.

This time there are a lot of method signatures since there are more combinations. The 
method signatures are as follows:

public static LocalDateTime of(int year, int month, 

  int dayOfMonth, int hour, int minute)

public static LocalDateTime of(int year, int month, 

  int dayOfMonth, int hour, int minute, int second)

public static LocalDateTime of(int year, int month, 

  int dayOfMonth, int hour, int minute, int second, int nanos)

public static LocalDateTime of(int year, Month month, 

  int dayOfMonth, int hour, int minute)

public static LocalDateTime of(int year, Month month, 

  int dayOfMonth, int hour, int minute, int second)

public static LocalDateTime of(int year, Month month, 

  int dayOfMonth, int hour, int minute, int second, int nanos)

public static LocalDateTime of(LocalDate date, LocalTime)

Did you notice that we did not use a constructor in any of the examples? The date and 
time classes have private constructors to force you to use the static methods. The exam 
creators may try to throw something like this at you:

LocalDate d = new LocalDate(); // DOES NOT COMPILE

Don’t fall for this. You are not allowed to construct a date or time object directly.
Another trick is to see what happens when you pass invalid numbers to of(). For example:

LocalDate.of(2015, Month.JANUARY, 32)     // throws DateTimeException

You don’t need to know the exact exception that’s thrown, but it’s a clear one:

java.time.DateTimeException: Invalid value for DayOfMonth 

  (valid values 1 - 28/31): 32

Creating Dates in Java 7 and Earlier

You can see some of the problems with the “old way” in the following table. There 

wasn’t a way to specify just a date without the time. The Date class represented both the 

date and time whether you wanted it to or not. Trying to create a specifi c date required 

more code than it should have. Month indexes were 0 based instead of 1 based, which 

was confusing.

continues



142 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 142

There’s an old way to create a date. In Java 1.1, you created a specifi c Date with this: Date 

jan = new Date(2015, Calendar.JANUARY, 1);. You could use the Calendar class 

beginning with Java 1.2. Date exists mainly for backward compatibility and so that 

Calendar can work with code—making the “new way” the third way. The “new way” is 

much better so it looks like this is a case of the third time is the charm!

 Old way
New way (Java 8 and 
later)

Importing import java.util.*; import java
.time.*;

Creating an 
object with 
the  current 
date

Date d = new Date(); LocalDate d = 
LocalDate
.now();

Creating an 
object with 
the  current 
date and time

Date d = new Date(); LocalDateTime dt = 
LocalDateTime.
now();

Creating 
an object 
 representing 
January 1, 
2015

Calendar c = Calendar.getInstance();

c.set(2015, Calendar. JANUARY, 1);

Date jan = c.getTime();

or

Calendar c = new GregorianCalendar(2015, 
Calendar. JANUARY, 1);

Date jan = c.getTime();

LocalDate jan = 
LocalDate.of(2015, 
Month.JANUARY, 
1);

Creating Jan-
uary 1, 2015 
 without the 
 constant

Calendar c = Calendar.getInstance();

c.set(2015, 0, 1);

Date jan = c.getTime();

LocalDate jan = 
LocalDate.of(2015, 
1, 1)

Manipulating Dates and Times
Adding to a date is easy. The date and time classes are immutable, just like String was. 
This means that we need to remember to assign the results of these methods to a reference 
variable so they are not lost.

12: LocalDate date = LocalDate.of(2014, Month.JANUARY, 20);

13: System.out.println(date);          // 2014-01-20

14: date = date.plusDays(2);

15: System.out.println(date);          // 2014-01-22

16: date = date.plusWeeks(1);

continued



Working with Dates and Times 143

c03.indd 1½  4/2014 Page 143

17: System.out.println(date);          // 2014-01-29

18: date = date.plusMonths(1);

19: System.out.println(date);          // 2014-02-28

20: date = date.plusYears(5);

21: System.out.println(date);          // 2019-02-28

This code is nice because it does just what it sounds like. We start out with January 20, 
2014. On line 14, we add two days to it and reassign it to our reference variable. On line 16, 
we add a week. This method allows us to write clearer code than plusDays(7). Now date is 
January 29, 2014. On line 18, we add a month. This would bring us to February 29, 2014. 
However, 2014 is not a leap year. (2012 and 2016 are leap years.) Java is smart enough to 
realize February 29, 2014 does not exist and gives us February 28, 2014 instead. Finally, line 
20 adds fi ve years.

There are also nice easy methods to go backward in time. This time, let’s work with 
LocalDateTime.

22: LocalDate date = LocalDate.of(2020, Month.JANUARY, 20);

23: LocalTime time = LocalTime.of(5, 15);

24: LocalDateTime dateTime = LocalDateTime.of(date, time);

25: System.out.println(dateTime);          // 2020-01-20T05:15

26: dateTime = dateTime.minusDays(1);

27: System.out.println(dateTime);          // 2020-01-19T05:15

28: dateTime = dateTime.minusHours(10);

29: System.out.println(dateTime);          // 2020-01-18T19:15

30: dateTime = dateTime.minusSeconds(30);

31: System.out.println(dateTime);          // 2020-01-18T19:14:30

Line 25 prints the original date of January 20, 2020 at 5:15 a.m. Line 26 subtracts a 
full day, bringing us to January 19, 2020 at 5:15 a.m. Line 28 subtracts 10 hours, showing 
that the date will change if the hours cause it to and brings us to January 18, 2020 at 19:15 
(7:15 p.m.). Finally, line 30 subtracts 30 seconds. We see that all of a sudden the display 
value starts displaying seconds. Java is smart enough to hide the seconds and nanoseconds 
when we aren’t using them.

It is common for date and time methods to be chained. For example, without the print 
statements, the previous example could be rewritten as follows:

LocalDate date = LocalDate.of(2020, Month.JANUARY, 20);

LocalTime time = LocalTime.of(5, 15);

LocalDateTime dateTime = LocalDateTime.of(date2, time)

   .minusDays(1).minusHours(10).minusSeconds(30);

When you have a lot of manipulations to make, this chaining comes in handy. There are 
two ways the exam creators can try to trick you. What do you think this prints?

LocalDate date = LocalDate.of(2020, Month.JANUARY, 20);

date.plusDays(10);

System.out.println(date);



144 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 144

It prints January 20, 2020. Adding 10 days was useless because we ignored the result. 
Whenever you see immutable types, pay attention to make sure the return value of a 
method call isn’t ignored.

The exam also may test to see if you remember what each of the date and time objects 
includes. Do you see what is wrong here?

LocalDate date = LocalDate.of(2020, Month.JANUARY, 20);

date = date.plusMinutes(1);     // DOES NOT COMPILE

LocalDate does not contain time. This means you cannot add minutes to it. This can be 
tricky in a chained sequence of additions/subtraction operations, so make sure you know 
which methods in Table 3.4 can be called on which of the three objects.

TA B LE 3 . 4   Methods in LocalDate, LocalTime, and LocalDateTime

 
Can call on 
LocalDate?

Can call on 
LocalTime?

Can call on 
LocalDateTime?

plusYears/minusYears Yes No Yes

plusMonths/minusMonths Yes No Yes

plusWeeks/minusWeeks Yes No Yes

plusDays/minusDays Yes No Yes

plusHours/minusHours No Yes Yes

plusMinutes/minusMinutes No Yes Yes

plusSeconds/minusSeconds No Yes Yes

plusNanos/minusNanos No Yes Yes

Manipulating Dates in Java 7 and Earlier

As you look at all the code in the following table to do time calculations in the “old way,” 

you can see why Java needed to revamp the date and time APIs! The “old way” took a lot 

of code to do something simple.



Working with Dates and Times 145

c03.indd 1½  4/2014 Page 145

 Old way New way (Java 8 and later)

Adding a day public Date addDay(Date date) {

  Calendar cal = Calendar
  . getInstance();

  cal.setTime(date);

  cal.add(Calendar.DATE, 1);

  return cal.getTime();

}

public LocalDate 
addDay(LocalDate date) {

  return date. 
  plusDays(1);

}

Subtracting a 
day

public Date subtractDay(Date date) 
{

  Calendar cal = Calendar
. getInstance();

  cal.setTime(date);

  cal.add(Calendar.DATE, -1);

  return cal.getTime();

}

public LocalDate 
subtractDay(LocalDate 
date) {

  return date. 
  minusDays(1);

}

Working with Periods
Now we know enough to do something fun with dates! Our zoo performs animal enrich-
ment activities to give the animals something fun to do. The head zookeeper has decided 
to switch the toys every month. This system will continue for three months to see how it 
works out.

public static void main(String[] args) {

  LocalDate start = LocalDate.of(2015, Month.JANUARY, 1);

  LocalDate end = LocalDate.of(2015, Month.MARCH, 30);

  performAnimalEnrichment(start, end);

}

private static void performAnimalEnrichment(LocalDate start, LocalDate end) {

  LocalDate upTo = start;

  while (upTo.isBefore(end)) {          // check if still before end

   System.out.println("give new toy: " + upTo);

   upTo  = upTo.plusMonths(1);                    // add a month

  }}



146 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 146

This code works fi ne. It adds a month to the date until it hits the end date. The problem 
is that this method can’t be reused. Our zookeeper wants to try different schedules to see 
which works best.

Converting to a long

LocalDate and LocalDateTime have a method to convert them into long equivalents in rela-

tion to 1970. What’s special about 1970? That’s what UNIX started using for date standards, 

so Java reused it. And don’t worry—you don’t have to memorize the names for the exam.

 ■ LocalDate has toEpochDay(), which is the number of days since January 1, 1970.

 ■ LocalDateTime has toEpochTime(), which is the number of seconds since January 1, 

1970.

 ■ LocalTime does not have an epoch method. Since it represents a time that occurs on 

any date, it doesn’t make sense to compare it in 1970. Although the exam pretends 

time zones don’t exist, you may be wondering if this special January 1, 1970 is in a 

specifi c time zone. The answer is yes. This special time refers to when it was January 

1, 1970 in GMT (Greenwich Mean Time). Greenwich is in England and GMT does not 

participate in daylight savings time. This makes it a good reference point. (Again, you 

don’t have to know about GMT for the exam.)

Luckily, Java has a Period class that we can pass in. This code does the same thing as 
the previous example:

public static void main(String[] args) {

  LocalDate start = LocalDate.of(2015, Month.JANUARY, 1);

  LocalDate end = LocalDate.of(2015, Month.MARCH, 30);

  Period period = Period.ofMonths(1);               // create a period

  performAnimalEnrichment(start, end, period);

}

private static void performAnimalEnrichment(LocalDate start, LocalDate end, 

  Period period) {               // uses the generic period

  LocalDate upTo = start;

  while (upTo.isBefore(end)) {

    System.out.println("give new toy: " + upTo);

    upTo = upTo.plus(period);     // adds the period

  }}

The method can add an arbitrary period of time that gets passed in. This allows us to 
reuse the same method for different periods of time as our zookeeper changes her mind.

There are fi ve ways to create a Period class:

Period annually = Period.ofYears(1);               // every 1 year

Period quarterly = Period.ofMonths(3);               // every 3 months



Working with Dates and Times 147

c03.indd 1½  4/2014 Page 147

Period everyThreeWeeks = Period.ofWeeks(3);          // every 3 weeks

Period everyOtherDay = Period.ofDays(2);          // every 2 days

Period everyYearAndAWeek = Period.of(1, 0, 7);          // every year and 7 days

There’s one catch. You cannot chain methods when creating a Period. The following 
code looks like it is equivalent to the everyYearAndAWeek example, but it’s not. Only the 
last method is used because the Period.ofXXX methods are static methods.

Period wrong = Period.ofYears(1).ofWeeks(1);          // every week

This tricky code is really like writing the following:

Period wrong = Period.ofYears(1);

wrong = Period.ofWeeks(7);

This is clearly not what you intended! That’s why the of() method allows us to pass in 
the number of years, months, and days. They are all included in the same period. You will 
get a compiler warning about this. Compiler warnings tell you something is wrong or suspi-
cious without failing compilation.

You’ve probably noticed by now that a Period is a day or more of time. There is also 
Duration, which is intended for smaller units of time. For Duration, you can specify the 
number of days, hours, minutes, seconds, or nanoseconds. And yes, you could pass 365 
days to make a year, but you really shouldn’t—that’s what Period is for. Duration isn’t 
on the exam since it roughly works the same way as Period. It’s good to know it exists, 
though.

The last thing to know about Period is what objects it can be used with. Let’s look at 
some code:

3: LocalDate date = LocalDate.of(2015, 1, 20);

4: LocalTime time = LocalTime.of(6, 15);

5: LocalDateTime dateTime = LocalDateTime.of(date, time);

6: Period period = Period.ofMonths(1);

7: System.out.println(date.plus(period));          // 2015-02-20

8: System.out.println(dateTime.plus(period));          // 2015-02-20T06:15

9: System.out.println(time.plus(period));   // UnsupportedTemporalTypeException

Lines 7 and 8 work as expected. They add a month to January 20, 2015, giving us 
February 20, 2015. The fi rst has only the date, and the second has both the date and time.

Line 9 attempts to add a month to an object that only has a time. This won’t work. Java 
throws an exception and complains that we attempt to use an Unsupported unit: Months. 

As you can see, you’ll have to pay attention to the type of date and time objects every 
place you see them.



148 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 148

Formatting Dates and Times
The date and time classes support many methods to get data out of them:

LocalDate date = LocalDate.of(2020, Month.JANUARY, 20);

System.out.println(date.getDayOfWeek());     // MONDAY

System.out.println(date.getMonth());          // JANUARY

System.out.println(date.getYear());          // 2020

System.out.println(date.getDayOfYear());     // 20

We could use this information to display information about the date. However, it would 
be more work than necessary. Java provides a class called DateTimeFormatter to help us 
out. Unlike the LocalDateTime class, DateTimeFormatter can be used to format any type of 
date and/or time object. What changes is the format. DateTimeFormatter is in the package 
java.time.format.

LocalDate date = LocalDate.of(2020, Month.JANUARY, 20);

LocalTime time = LocalTime.of(11, 12, 34);

LocalDateTime dateTime = LocalDateTime.of(date, time);System.out.println(date
.format(DateTimeFormatter.ISO_LOCAL_DATE));

System.out.println(time.format(DateTimeFormatter.ISO_LOCAL_TIME));

System.out.println(dateTime.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

ISO is a standard for dates. The output of the previous code looks like this:

2020-01-20

11:12:34

2020-01-20T11:12:34

This is a reasonable way for computers to communicate, but probably not how you want 
to output the date and time in your program. Luckily there are some predefi ned formats 
that are more useful:

DateTimeFormatter shortDateTime =

  DateTimeFormatter.ofLocalizedDate(FormatStyle.SHORT);

System.out.println(shortDateTime.format(dateTime));     // 1/20/20

System.out.println(shortDateTime.format(date));      // 1/20/20

System.out.println(

  shortDateTime.format(time)); // UnsupportedTemporalTypeException

Here we say we want a localized formatter in the predefi ned short format. The last line 
throws an exception because a time cannot be formatted as a date. The format() method is 
declared on both the formatter objects and the date/time objects, allowing you to reference 
the objects in either order. The following statements print exactly the same thing as the 
previous code:



Working with Dates and Times 149

c03.indd 1½  4/2014 Page 149

DateTimeFormatter shortDateTime =

  DateTimeFormatter.ofLocalizedDate(FormatStyle.SHORT);

System.out.println(dateTime.format(shortDateTime));

System.out.println(date.format(shortDateTime));

System.out.println(time.format(shortDateTime));

In this book, we’ll change around the orders to get you used to seeing it both ways. 
Table 3.5 shows the legal and illegal localized formatting methods.

TA B LE 3 .5   ofLocalized methods

DateTimeFormatter 
f = DateTime
Formatter._____
(FormatStyle.SHORT);

Calling f.format
(localDate)

Calling f.format
(localDateTime)

Calling f.format
(localTime)

ofLocalizedDate Legal – shows 
whole object

Legal – shows 
just date part

Throws runtime 
exception

ofLocalizedDateTime Throws runtime 
exception

Legal – shows 
whole object

Throws runtime 
exception

ofLocalizedTime Throws runtime 
exception

Legal – shows 
just time part

Legal – shows 
whole object

There are two predefi ned formats that can show up on the exam: SHORT and MEDIUM. The 
other predefi ned formats involve time zones, which are not on the exam.

LocalDate date = LocalDate.of(2020, Month.JANUARY, 20);

LocalTime time = LocalTime.of(11, 12, 34);

LocalDateTime dateTime = LocalDateTime.of(date, time);

DateTimeFormatter shortF = DateTimeFormatter

   .ofLocalizedDateTime(FormatStyle.SHORT);

DateTimeFormatter mediumF = DateTimeFormatter

  .ofLocalizedDateTime(FormatStyle.MEDIUM);

System.out.println(shortF.format(dateTime));     // 1/20/20 11:12 AM

System.out.println(mediumF.format(dateTime));     // Jan 20, 2020 11:12:34 AM

If you don’t want to use one of the predefi ned formats, you can create your own. For 
example, this code spells out the month:

DateTimeFormatter f = DateTimeFormatter.ofPattern("MMMM dd, yyyy, hh:mm");

System.out.println(dateTime.format(f));     // January 20, 2020, 11:12



150 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 150

Before we look at the syntax, know you are not expected to memorize what different 
numbers of each symbol mean. The most you will need to do is recognize the date and time 
pieces.

MMMM  M represents the month. The more Ms you have, the more verbose the Java output. 
For example, M outputs 1, MM outputs 01, MMM outputs Jan, and MMMM outputs January.

dd  d represents the date in the month. As with month, the more ds you have, the more 
verbose the Java output. dd means to include the leading zero for a single-digit month.

,  Use , if you want to output a comma (this also appears after the year).

yyyy  y represents the year. yy outputs a two-digit year and yyyy outputs a four-digit year.

hh  h represents the hour. Use hh to include the leading zero if you’re outputting a single-
digit hour.

:  Use : if you want to output a colon.

mm  m represents the minute. 

Formatting Dates in Java 7 and Earlier

Formatting is roughly equivalent to the “old way”; it just uses a different class.

 Old way New way (Java 8 and later)

Formatting the 
times

SimpleDateFormat sf = new 
SimpleDateFormat("hh:mm");

sf.format(jan3);

DateTimeFormatter f 
= DateTimeFormatter.
ofPattern(“hh:mm”);

dt.format(f);

Let’s do a quick review. Can you fi gure out which of these lines will throw an exception?

4: DateTimeFormatter f = DateTimeFormatter.ofPattern("hh:mm");

5: f.format(dateTime);

6: f.format(date);

7: f.format(time);

If you get this question on the exam, think about what the symbols represent. We have 
h for hour and m for minute. Remember M (uppercase) is month and m (lowercase) is minute. 
We can only use this formatter with objects containing times. Therefore, line 6 will throw 
an exception. 



Summary 151

c03.indd 1½  4/2014 Page 151

Parsing Dates and Times
Now that you know how to convert a date or time to a formatted String, you’ll fi nd it easy 
to convert a String to a date or time. Just like the format() method, the parse() method 
takes a formatter as well. If you don’t specify one, it uses the default for that type.

DateTimeFormatter f = DateTimeFormatter.ofPattern("MM dd yyyy");

LocalDate date = LocalDate.parse("01 02 2015", f);

LocalTime time = LocalTime.parse("11:22");

System.out.println(date);          // 2015-01-02

System.out.println(time);          // 11:22

Here we show using both a custom formatter and a default value. This isn’t common, 
but you might have to read code that looks like this on the exam. Parsing is consistent in 
that if anything goes wrong, Java throws a runtime exception. That could be a format that 
doesn’t match the String to be parsed or an invalid date.

Summary

In this chapter, you learned that Strings are immutable sequences of characters. The new 
operator is optional. The concatenation operator (+) creates a new String with the con-
tent of the fi rst String followed by the content of the second String. If either operand 
involved in the + expression is a String, concatenation is used; otherwise, addition is used. 
String literals are stored in the string pool. The String class has many methods. You need 
to know charAt(), concat(), endsWith(), equals(), equalsIgnoreCase(), indexOf(), 
length(), replace(), startsWith(), substring(), toLowerCase(), toUpperCase(), and 
trim().

StringBuilders are mutable sequences of characters. Most of the methods return a 
reference to the current object to allow method chaining. The StringBuilder class has 
many methods. You need to know append(), charAt(), delete(), deleteCharAt(), 
indexOf(), insert(), length(), reverse(), substring(), and toString(). StringBuffer 
is the same as StringBuilder except that it is thread safe.

Calling == on String objects will check whether they point to the same object in the 
pool. Calling == on StringBuilder references will check whether they are pointing to the 
same StringBuilder object. Calling equals() on String objects will check whether the 
sequence of characters is the same. Calling equals() on StringBuilder objects will check 
whether they are pointing to the same object rather than looking at the values inside.

An array is a fi xed-size area of memory on the heap that has space for primitives or 
pointers to objects. You specify the size when creating it—for example, int[] a = new 
int[6];. Indexes begin with 0 and elements are referred to using a[0]. The Arrays.sort() 
method sorts an array. Arrays.binarySearch() searches a sorted array and returns the 
index of a match. If no match is found, it negates the position where the element would 



152 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 152

need to be inserted and subtracts 1. Methods that are passed varargs (…) can be used as 
if a normal array was passed in. In a multidimensional array, the second-level arrays and 
beyond can be different sizes.

An ArrayList can change size over its life. It can be stored in an ArrayList or List 
reference. Generics can specify the type that goes in the ArrayList. You need to know the 
methods add(), clear(), contains(), equals(), isEmpty(), remove(), set(), and size(). 
Although an ArrayList is not allowed to contain primitives, Java will autobox parameters 
passed in to the proper wrapper type. Collections.sort() sorts an ArrayList.

A LocalDate contains just a date, a LocalTime contains just a time, and a LocalDateTime 
contains both a date and time. All three have private constructors and are created using 
LocalDate.now() or LocalDate.of() (or the equivalents for that class). Dates and times 
can be manipulated using plusXXX or minusXXX methods. The Period class represents a 
number of days, months, or years to add or subtract from a LocalDate or LocalDateTime. 
DateTimeFormatter is used to output dates and times in the desired format. The date and 
time classes are all immutable, which means the return value must be used.

Exam Essentials

Be able to determine the output of code using String.  Know the rules for concatenat-
ing Strings and how to use common String methods. Know that Strings are immutable. 
Pay special attention to the fact that indexes are zero based and that substring() gets the 
string up until right before the index of the second parameter.

Be able to determine the output of code using StringBuilder.  Know that 
StringBuilder is mutable and how to use common StringBuilder methods. Know that 
substring() does not change the value of a StringBuilder whereas append(), delete(), 
and insert() do change it. Also note that most StringBuilder methods return a reference 
to the current instance of StringBuilder.

Understand the difference between == and equals.  == checks object equality. equals() 
depends on the implementation of the object it is being called on. For Strings, equals() 
checks the characters inside of it.

Be able to determine the output of code using arrays.  Know how to declare and instanti-
ate one-dimensional and multidimensional arrays. Be able to access each element and know 
when an index is out of bounds. Recognize correct and incorrect output when searching 
and sorting.

Be able to determine the output of code using ArrayList.  Know that ArrayList can 
increase in size. Be able to identify the different ways of declaring and instantiating an 
ArrayList. Identify correct output from ArrayList methods, including the impact of 
autoboxing.

Recognize invalid uses of dates and times.  LocalDate does not contain time fi elds and 
LocalTime does not contain date fi elds. Watch for operations being performed on the 
wrong time. Also watch for adding or subtracting time and ignoring the result.



Review Questions 153

c03.indd 1½  4/2014 Page 153

Review Questions

1. What is output by the following code? (Choose all that apply)
1: public class Fish {

2:  public static void main(String[] args) {

3:    int numFish = 4;

4:    String fishType = "tuna";

5:    String anotherFish = numFish + 1;

6:    System.out.println(anotherFish + " " + fishType);

7:    System.out.println(numFish + " " + 1);

8:  } }

A. 4 1

B. 41

C. 5

D. 5 tuna

E. 5tuna

F. 51tuna

G. The code does not compile.

2. Which of the following are output by this code? (Choose all that apply)
3: String s = "Hello";

4: String t = new String(s);

5: if ("Hello".equals(s)) System.out.println("one");

6: if (t == s) System.out.println("two");

7: if (t.equals(s)) System.out.println("three");

8: if ("Hello" == s) System.out.println("four");

9: if ("Hello" == t) System.out.println("five");

A. one

B. two

C. three

D. four

E. five

F. The code does not compile.

3. Which are true statements? (Choose all that apply)

A. An immutable object can be modified.

B. An immutable object cannot be modified.

C. An immutable object can be garbage collected.



154 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 154

D. An immutable object cannot be garbage collected.

E. String is immutable.

F. StringBuffer is immutable.

G. StringBuilder is immutable.

4. What is the result of the following code?
7: StringBuilder sb = new StringBuilder();

8: sb.append("aaa").insert(1, "bb").insert(4, "ccc");

9: System.out.println(sb);

A. abbaaccc

B. abbaccca

C. bbaaaccc

D. bbaaccca

E. An exception is thrown.

F. The code does not compile.

5. What is the result of the following code?
2: String s1 = "java";

3: StringBuilder s2 = new StringBuilder("java");

4: if (s1 == s2)

5:  System.out.print("1");

6: if (s1.equals(s2))

7:  System.out.print("2");

A. 1

B. 2

C. 12

D. No output is printed.

E. An exception is thrown.

F. The code does not compile.

6. What is the result of the following code?
public class Lion {

  public void roar(String roar1, StringBuilder roar2) {

    roar1.concat("!!!");

    roar2.append("!!!");

  }

public static void main(String[] args) {

  String roar1 = "roar";

  StringBuilder roar2 = new StringBuilder("roar");

  new Lion().roar(roar1, roar2);



Review Questions 155

c03.indd 1½  4/2014 Page 155

  System.out.println(roar1 + " " + roar2);

} }

A. roar roar

B. roar roar!!!

C. roar!!! roar

D. roar!!! roar!!!

E. An exception is thrown.

F. The code does not compile.

7. Which are the results of the following code? (Choose all that apply)
String letters = "abcdef";

System.out.println(letters.length());

System.out.println(letters.charAt(3));

System.out.println(letters.charAt(6));

A. 5

B. 6

C. c

D. d

E. An exception is thrown.

F. The code does not compile.

8. Which are the results of the following code? (Choose all that apply)
String numbers = "012345678";

System.out.println(numbers.substring(1, 3));

System.out.println(numbers.substring(7, 7));

System.out.println(numbers.substring(7));

A. 12

B. 123

C. 7

D. 78

E. A blank line.

F. An exception is thrown.

G. The code does not compile.

9. What is the result of the following code? 
3: String s = "purr";

4: s.toUpperCase();

5: s.trim();

6: s.substring(1, 3);



156 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 156

7: s += " two";

8: System.out.println(s.length());

A. 2

B. 4

C. 8

D. 10

E. An exception is thrown.

F. The code does not compile.

10. What is the result of the following code? (Choose all that apply)
13: String a = "";

14: a += 2;

15: a += 'c';

16: a += false;  

17: if ( a == "2cfalse") System.out.println("==");

18: if ( a.equals("2cfalse")) System.out.println("equals");

A. Compile error on line 14.

B. Compile error on line 15.

C. Compile error on line 16.

D. Compile error on another line.

E. ==

F. equals

G. An exception is thrown.

11. What is the result of the following code?
4: int total = 0;

5: StringBuilder letters = new StringBuilder("abcdefg");

6: total += letters.substring(1, 2).length();

7: total += letters.substring(6, 6).length();

8: total += letters.substring(6, 5).length();

9: System.out.println(total);

A. 1

B. 2

C. 3

D. 7

E. An exception is thrown.

F. The code does not compile.



Review Questions 157

c03.indd 1½  4/2014 Page 157

12. What is the result of the following code? (Choose all that apply)
StringBuilder numbers = new StringBuilder("0123456789");

numbers.delete(2,  8);

numbers.append("-").insert(2, "+");

System.out.println(numbers);

A. 01+89–

B. 012+9–

C. 012+–9

D. 0123456789

E. An exception is thrown.

F. The code does not compile.

13. What is the result of the following code?
StringBuilder b = "rumble";

b.append(4).deleteCharAt(3).delete(3, b.length() - 1);

System.out.println(b);

A. rum

B. rum4

C. rumb4

D. rumble4

E. An exception is thrown.

F. The code does not compile.

14. Which of the following can replace line 4 to print "avaJ"? (Choose all that apply)
3: StringBuilder puzzle = new StringBuilder("Java");

4: // INSERT CODE HERE

5: System.out.println(puzzle);

A. puzzle.reverse();

B. puzzle.append("vaJ$").substring(0, 4);

C. puzzle.append("vaJ$").delete(0, 3).deleteCharAt(puzzle.length() - 1);

D. puzzle.append("vaJ$").delete(0, 3).deleteCharAt(puzzle.length());

E. None of the above.

15. Which of these array declarations is not legal? (Choose all that apply)

A. int[][] scores = new int[5][];

B. Object[][][] cubbies = new Object[3][0][5];

C. String beans[] = new beans[6];

D. java.util.Date[] dates[] = new java.util.Date[2][];

E. int[][] types = new int[];

F. int[][] java = new int[][];



158 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 158

16. Which of these compile when replacing line 8? (Choose all that apply)
7: char[]c = new char[2];

8: // INSERT CODE HERE

A. int length = c.capacity;

B. int length = c.capacity();

C.  int length = c.length;

D. int length = c.length();

E. int length = c.size;

F. int length = c.size();

G. None of the above.

17. Which of these compile when replacing line 8? (Choose all that apply)
7: ArrayList l = new ArrayList();

8: // INSERT CODE HERE

A. int length = l.capacity;

B. int length = l.capacity();

C.  int length = l.length;

D. int length = l.length();

E. int length = l.size;

F. int length = l.size();

G. None of the above.

18. Which of the following are true? (Choose all that apply)

A. An array has a fixed size.

B. An ArrayList has a fixed size.

C. An array allows multiple dimensions.

D. An array is ordered.

E. An ArrayList is ordered.

F. An array is immutable.

G. An ArrayList is immutable.

19. Which of the following are true? (Choose all that apply)

A. Two arrays with the same content are equal.

B. Two ArrayLists with the same content are equal.

C. If you call remove(0) using an empty ArrayList object, it will compile successfully.

D. If you call remove(0) using an empty ArrayList object, it will run successfully.

E. None of the above.



Review Questions 159

c03.indd 1½  4/2014 Page 159

20. What is the result of the following statements?
6:  List<String> list = new ArrayList<String>();

7:  list.add("one");

8:  list.add("two");

9:  list.add(7);

10: for(String s : list)  System.out.print(s);

A. onetwo

B. onetwo7

C. onetwo followed by an exception

D. Compiler error on line 9.

E. Compiler error on line 10.

21. What is the result of the following statements?
3: ArrayList<Integer> values = new ArrayList<>();

4: values.add(4);

5: values.add(5);

6: values.set(1, 6);

7: values.remove(0);

8: for (Integer v : values) System.out.print(v);

A. 4

B. 5

C. 6

D. 46

E. 45

F. An exception is thrown.

G. The code does not compile.

22. What is the result of the following?
int[] random = { 6, -4, 12, 0, -10 };

int x = 12;

int y = Arrays.binarySearch(random, x);

System.out.println(y);

A. 2

B. 4

C. 6

D. The result is undefined.

E. An exception is thrown.

F. The code does not compile.



160 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 160

23. What is the result of the following?
4: List<Integer> list = Arrays.asList(10, 4, -1, 5);

5: Collections.sort(list);

6: Integer array[] = list.toArray(new Integer[4]);

7: System.out.println(array[0]);

A. –1

B. 10

C. Compiler error on line 4.

D. Compiler error on line 5.

E. Compiler error on line 6.

F. An exception is thrown.

24. What is the result of the following?
6: String [] names = {"Tom", "Dick", "Harry"};

7: List<String> list = names.asList();

8: list.set(0, "Sue");

9: System.out.println(names[0]);

A. Sue

B. Tom

C. Compiler error on line 7.

D. Compiler error on line 8.

E. An exception is thrown.

25. What is the result of the following?
List<String> hex = Arrays.asList("30", "8", "3A", "FF");

Collections.sort(hex);

int x = Collections.binarySearch(hex, "8");

int y = Collections.binarySearch(hex, "3A");

int z = Collections.binarySearch(hex, "4F");

System.out.println(x + " " + y + " " + z);

A 0 1 –2

B. 0 1 –3

C. 2 1 –2

D. 2 1 –3

E. None of the above.

F. The code doesn’t compile.

26. Which of the following are true statements about the following code? (Choose all that 
apply)
4: List<Integer> ages = new ArrayList<>();

5: ages.add(Integer.parseInt("5"));



Review Questions 161

c03.indd 1½  4/2014 Page 161

6: ages.add(Integer.valueOf("6"));

7: ages.add(7);

8: ages.add(null);

9: for (int age : ages) System.out.print(age);

A. The code compiles.

B. The code throws a runtime exception.

C. Exactly one of the add statements uses autoboxing.

D. Exactly two of the add statements use autoboxing.

E. Exactly three of the add statements use autoboxing.

27. What is the result of the following?
List<String> one = new ArrayList<String>();

one.add("abc");

List<String> two = new ArrayList<>();

two.add("abc");

if (one == two) 

  System.out.println("A");

else if (one.equals(two))

  System.out.println("B");

else 

  System.out.println("C");

A. A

B. B

C. C

D. An exception is thrown.

E. The code does not compile.

28. Which of the following can be inserted into the blank to create a date of June 21, 2014? 
(Choose all that apply)
import java.time.*;

public class StartOfSummer {

  public static void main(String[] args) {

  LocalDate date = ____________________________

  }

}

A. new LocalDate(2014, 5, 21);

B. new LocalDate(2014, 6, 21);

C. LocalDate.of(2014, 5, 21);



162 Chapter 3 ■ Core Java APIs

c03.indd 1½  4/2014 Page 162

D. LocalDate.of(2014, 6, 21);

E. LocalDate.of(2014, Calendar.JUNE, 21);

F. LocalDate.of(2014, Month.JUNE, 21);

29. What is the output of the following code?
LocalDate date = LocalDate.parse("2018-04-30", DateTimeFormatter.ISO_LOCAL_
DATE);

date.plusDays(2);

date.plusHours(3);

System.out.println(date.getYear() + " " + date.getMonth() + " "

+ date.getDayOfMonth());

A. 2018 APRIL 2

B. 2018 APRIL 30

C. 2018 MAY 2

D. The code does not compile.

E. A runtime exception is thrown.

30. What is the output of the following code?
LocalDate date = LocalDate.of(2018, Month.APRIL, 40);

System.out.println(date.getYear() + " " + date.getMonth() + " "

+ date.getDayOfMonth());

A. 2018 APRIL 4

B. 2018 APRIL 30

C. 2018 MAY 10

D. Another date.

E. The code does not compile.

F. A runtime exception is thrown.

31. What is the output of the following code?
LocalDate date = LocalDate.of(2018, Month.APRIL, 30);

date.plusDays(2);

date.plusYears(3);

System.out.println(date.getYear() + " " + date.getMonth() + " "

+ date.getDayOfMonth());

A. 2018 APRIL 2

B. 2018 APRIL 30

C. 2018 MAY 2

D. 2021 APRIL 2



Review Questions 163

c03.indd 1½  4/2014 Page 163

E. 2021 APRIL 30

F. 2021 MAY 2

G. A runtime exception is thrown.

32. What is the output of the following code?
LocalDateTime d = LocalDateTime.of(2015, 5, 10, 11, 22, 33);

Period p = Period.of(1, 2, 3);

d = d.minus(p);

DateTimeFormatter f = DateTimeFormatter.ofLocalizedTime(FormatStyle.SHORT);

System.out.println(d.format(f));

A. 3/7/14 11:22 AM

B. 5/10/15 11:22 AM

C. 3/7/14

D. 5/10/15

E. 11:22 AM

F. The code does not compile.

G. A runtime exception is thrown.

33. What is the output of the following code?
LocalDateTime d = LocalDateTime.of(2015, 5, 10, 11, 22, 33);

Period p = Period.ofDays(1).ofYears(2);

d = d.minus(p);

DateTimeFormatter f = DateTimeFormatter.ofLocalizedDateTime(FormatStyle
.SHORT);

System.out.println(f.format(d));

 A. 5/9/13 11:22 AM

B. 5/10/13 11:22 AM

C. 5/9/14

D. 5/10/14

E. The code does not compile.

F. A runtime exception is thrown.  





c04.indd 1½  4/2014 Page 165

Chapter 

4
Methods and 
Encapsulation

OCA EXAM OBJECTIVES COVERED IN THIS 
CHAPTER:

 ✓ Working with Methods and Encapsulation

 ■ Create methods with arguments and return values; including 

overloaded methods

 ■ Apply the static keyword to methods and fields

 ■ Create and overload constructors; include impact on default 

constructors

 ■ Apply access modifiers

 ■ Apply encapsulation principles to a class

 ■ Determine the effect upon object references and primitive 

values when they are passed into methods that change the 

values

 ✓ Working with Selected classes from the Java API

 ■ Write a simple Lambda expression that consumes a Lambda 

Predicate expression



c04.indd 1½  4/2014 Page 166

In previous chapters, we’ve used methods and constructors 
without examining them in detail. In this chapter, we’ll explore 
methods and constructors in depth and cover everything you 

need to know about them for the OCA exam. (Well, almost—Chapter 5, “Class Design,” 
will explain the effects of inheritance on both methods and constructors.) This chapter dis-
cusses instance variables, the final keyword, access modifi ers, and initialization. You’ll also 
learn how to write a simple lambda expression.

Designing Methods

Every interesting Java program we’ve seen has had a main() method. We can write other meth-
ods, too. For example, we can write a basic method to take a nap, as shown in Figure 4.1.

F I GU R E 4 .1   Method signature

public final void nap(int minutes) throws InterruptedException {

     // take a nap

}
method body

list of parameters

method name

parentheses (required)
exception (optional)

access modifier

optional specifier
return type

This is called a method declaration, which specifi es all the information needed to call 
the method. There are a lot of parts, and we’ll cover each one in more detail. Table 4.1 is a 
brief reference to the elements of a method declaration. Don’t worry if it seems like a lot of 
information—by the time you fi nish this chapter, it will all fi t together. 

TA B LE 4 .1   Parts of a method declaration

Element Value in nap() example Required?

Access modifier public No

Optional specifier final No



Designing Methods 167

c04.indd 1½  4/2014 Page 167

Element Value in nap() example Required?

Return type void Yes

Method name nap Yes

Parameter list (int minutes) Yes, but can be empty parentheses

Optional exception 
list

throws InterruptedException No

Method body {

  // take a nap

}

Yes, but can be empty braces

To call this method, just type its name, followed by a single int value in parentheses:

nap(10);

Let’s start by taking a look at each of these parts of a basic method.

Access Modifiers
Java offers four choices of access modifi er:

public The method can be called from any class.

private  The method can only be called from within the same class.

protected The method can only be called from classes in the same package or subclasses. 
You’ll learn about subclasses in Chapter 5.

Default (Package Private) Access  The method can only be called from classes in the same 
package. This one is tricky because there is no keyword for default access. You simply omit 
the access modifi er.

There’s a default keyword in Java. You saw it in the switch statement in 
Chapter 2, “Operators and Statements,” and you’ll see it again in the next 
chapter when we discuss interfaces. It’s not used for access control.

We’ll explore the impact of the various access modifi ers later in this chapter. For now, just 
master identifying valid syntax of methods. The exam creators like to trick you by putting 
method elements in the wrong order or using incorrect values. 

We’ll have practice examples as we go through each of the method elements in this sec-
tion. Make sure you understand why each of these is a valid or invalid method declaration. 
Pay attention to the access modifi ers as you fi gure out what is wrong with the ones that 
don’t compile:

public void walk1() {}

default void walk2() {} // DOES NOT COMPILE



168 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 168

void public walk3() {} // DOES NOT COMPILE

void walk4() {}

walk1() is a valid method declaration with public access. walk4() is a valid method 
declaration with default access. walk2() doesn’t compile because default is not a valid access 
modifi er. walk3() doesn’t compile because the access modifi er is specifi ed after the return 
type.

Optional Specifiers
There are a number of optional specifi ers, but most of them aren’t on the exam. Optional 
specifi ers come from the following list. Unlike with access modifi ers, you can have multiple 
specifi ers in the same method (although not all combinations are legal). When this happens, 
you can specify them in any order. And since it is optional, you can’t have any of them at 
all. This means you can have zero or more specifi ers in a method declaration.

static  Covered later in this chapter. Used for class methods.

abstract  Covered in Chapter 5. Used when not providing a method body.

final  Covered in Chapter 5. Used when a method is not allowed to be overridden by a 
subclass.

synchronized  On the OCP but not the OCA exam. 

native  Not on the OCA or OCP exam. Used when interacting with code written in 
another language such as C++.

strictfp  Not on the OCA or OCP exam. Used for making fl oating-point calcu-
lations portable. 

Again, just focus on syntax for now. Do you see why these compile or don’t compile?

public void walk1() {}

public final void walk2() {}

public static final void walk3() {} 

public final static void walk4() {}

public modifier void walk5() {} // DOES NOT COMPILE

public void final walk6() {} // DOES NOT COMPILE

final public void walk7() {}

walk1() is a valid method declaration with no optional specifi er. This is okay; it is 
optional, after all. walk2() is a valid method declaration, with final as the optional 
specifi er. walk3() and walk4() are valid method declarations with both final and static 
as optional specifi ers. The order of these two keywords doesn’t matter. walk5() doesn’t 



Designing Methods 169

c04.indd 1½  4/2014 Page 169

compile because modifi er is not a valid optional specifi er. walk6() doesn’t compile because 
the optional specifi er is after the return type. 

walk7() does compile. Java allows the optional specifi ers to appear before the access 
modifi er. This is a weird case and not one you need to know for the exam. We are mentioning 
it so you don’t get confused when practicing.

Return Type
The next item in a method declaration is the return type. The return type might be an 
actual Java type such as String or int. If there is no return type, the void keyword is used. 
This special return type comes from the English language: void means without contents. In 
Java, we have no type there.

Remember that a method must have a return type. If no value is returned, 
the return type is void. You cannot omit the return type.

When checking return types, you also have to look inside the method body. Methods 
with a return type other than void are required to have a return statement inside the 
method body. This return statement must include the primitive or object to be returned. 
Methods that have a return type of void are permitted to have a return statement with no 
value returned or omit the return statement entirely.

Ready for some examples? Can you explain why these methods compile or don’t?

public void walk1() { }

public void walk2() { return; }

public String walk3() { return ""; }

public String walk4() { }  // DOES NOT COMPILE

public walk5() { }  // DOES NOT COMPILE

String walk6(int a) { if (a == 4) return ""; }  // DOES NOT COMPILE

Since the return type of walk1() is void, the return statement is optional. walk2() shows 
the optional return statement that correctly doesn’t return anything. walk3() is a valid 
method with a String return type and a return statement that returns a String. walk4() 
doesn’t compile because the return statement is missing. walk5() doesn’t compile because 
the return type is missing.

walk6() is a little tricky. There is a return statement, but it doesn’t always get run. If a is 6, 
the return statement doesn’t get executed. Since the String always needs to be returned, the 
compiler complains.



170 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 170

When returning a value, it needs to be assignable to the return type. Imagine there is a 
local variable of that type to which it is assigned before being returned. Can you think of 
how to add a line of code with a local variable in these two methods?

int integer() {

  return 9;

}

int long() {]

  return 9L; // DOES NOT COMPILE

}

It is a fairly mechanical exercise. You just add a line with a local variable. The type of 
the local variable matches the return type of the method. Then you return that local vari-
able instead of the value directly:

int integerExpanded() {

  int temp = 9;

  return temp;

}

int longExpanded() {

  int temp = 9L; // DOES NOT COMPILE

  return temp;

}

This shows more clearly why you can’t return a long primitive in a method that returns 
an int. You can’t stuff that long into an int variable, so you can’t return it directly either.

Method Name
Method names follow the same rules as we practiced with variable names in Chapter 1, 
“Java Building Blocks.” To review, an identifi er may only contain letters, numbers, $, or _. 
Also, the fi rst character is not allowed to be a number, and reserved words are not allowed. 
By convention, methods begin with a lowercase letter but are not required to. Since this is a 
review of Chapter 1, we can jump right into practicing with some examples:

public void walk1() { }

public void 2walk() { } // DOES NOT COMPILE

public walk3 void() { } // DOES NOT COMPILE

public void Walk_$() { }

public void() { } // DOES NOT COMPILE

walk1() is a valid method declaration with a traditional name. 2walk() doesn't compile 
because identifi ers are not allowed to begin with numbers. walk3() doesn't compile because 
the method name is before the return type. Walk_$() is a valid method declaration. While it 
certainly isn't good practice to start a method name with a capital letter and end with punc-
tuation, it is legal. The fi nal line of code doesn't compile because the method name is missing.



Designing Methods 171

c04.indd 1½  4/2014 Page 171

Parameter List
Although the parameter list is required, it doesn’t have to contain any parameters. This 
means you can just have an empty pair of parentheses after the method name, such as void 
nap(){}. If you do have multiple parameters, you separate them with a comma. There are 
a couple more rules for the parameter list that you’ll see when we cover varargs shortly. For 
now, let’s practice looking at method signatures with “regular” parameters:

public void walk1() { }

public void walk2 { } // DOES NOT COMPILE

public void walk3(int a) { }

public void walk4(int a; int b) { }  // DOES NOT COMPILE

public void walk5(int a, int b) { }

walk1() is a valid method declaration without any parameters. walk2() doesn't compile 
because it is missing the parentheses around the parameter list. walk3() is a valid method 
declaration with one parameter. walk4() doesn't compile because the parameters are sepa-
rated by a semicolon rather than a comma. Semicolons are for separating statements, not 
parameter lists. walk5() is a valid method declaration with two parameters.

Optional Exception List
In Java, code can indicate that something went wrong by throwing an exception. We’ll cover 
this in Chapter 6, “Exceptions.” For now, you just need to know that it is optional and 
where in the method signature it goes if present. In the example, InterruptedException is a 
type of Exception. You can list as many types of exceptions as you want in this clause sepa-
rated by commas. For example:

public void zeroExceptions() { }

public void oneException() throws IllegalArgumentException { }

public void twoExceptions() throws 

  IllegalArgumentException, InterruptedException { }

You might be wondering what methods do with these exceptions. The calling 
method can throw the same exceptions or handle them. You’ll learn more about 
this in Chapter 6.

Method Body
The fi nal part of a method declaration is the method body (except for abstract methods and 
interfaces, but you don’t need to know about either of those until next chapter). A method 
body is simply a code block. It has braces that contain zero or more Java statements. We’ve 
spent several chapters looking at Java statements by now, so you should fi nd it easy to fi gure 
out why these compile or don’t:



172 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 172

public void walk1() { }

public void walk2; // DOES NOT COMPILE

public void walk3(int a) { int name = 5; }

walk1() is a valid method declaration without an empty method body. walk2() doesn't 
compile because it is missing the braces around the empty method body. walk3() is a valid 
method declaration with one statement in the method body. 

You’ve made it through the basics of identifying correct and incorrect method declara-
tions. Now we can delve into more detail.

Working with Varargs

As you saw in the previous chapter, a method may use a vararg parameter (variable argu-
ment) as if it is an array. It is a little different than an array, though. A vararg parameter 
must be the last element in a method’s parameter list. This implies you are only allowed to 
have one vararg parameter per method. 

Can you identify why each of these does or doesn’t compile? (Yes, there is a lot of 
practice in this chapter. You have to be really good at identifying valid and invalid methods 
for the exam.)

public void walk1(int... nums) { }

public void walk2(int start, int... nums) { }

public void walk3(int... nums, int start) { } // DOES NOT COMPILE

public void walk4(int... start, int... nums) { } // DOES NOT COMPILE

walk1() is a valid method declaration with one vararg parameter. walk2() is a valid 
method declaration with one int parameter and one vararg parameter. walk3() and 
walk4() do not compile because they have a vararg parameter in a position that is not the 
last one.

When calling a method with a vararg parameter, you have a choice. You can pass in an 
array, or you can list the elements of the array and let Java create it for you. You can even 
omit the vararg values in the method call and Java will create an array of length zero for 
you. 

Finally! We get to do something other than identify whether method declarations are 
valid. Instead we get to look at method calls. Can you fi gure out why each method call out-
puts what it does?

15: public static void walk(int start, int... nums) {

16:  System.out.println(nums.length);

17: }

18: public static void main(String[] args) {

19:  walk(1);                    // 0

20:  walk(1, 2);                 // 1



Applying Access Modifiers 173

c04.indd 1½  4/2014 Page 173

21:  walk(1, 2, 3);                 // 2

22:  walk(1, new int[] {4, 5});     // 2

23: }

Line 19 passes 1 as start but nothing else. This means Java creates an array of length 0 for 
nums. Line 20 passes 1 as start and one more value. Java converts this one value to an array of 
length 1. Line 21 passes 1 as start and two more values. Java converts these two values to an 
array of length 2. Line 22 passes 1 as start and an array of length 2 directly as nums.

You’ve seen that Java will create an empty array if no parameters are passed for a 
vararg. However, it is still possible to pass null explicitly:

walk(1, null);     // throws a NullPointerException

Since null isn’t an int, Java treats it as an array reference that happens to be null. It 
just passes on the null array object to walk. Then the walk() method throws an exception 
because it tries to determine the length of null.

Accessing a vararg parameter is also just like accessing an array. It uses array indexing. 
For example:

16: public static void run(int... nums) {

17:   System.out.println(nums[1]);

18: }

19: public static void main(String[] args) {

20:   run(11, 22);     // 22

21: }

Line 20 calls a vararg parameter two parameters. When the method gets called, it sees 
an array of size 2. Since indexes are 0 based, 22 is printed.

Applying Access Modifiers

You already saw that there are four access modifi ers: public, private, protected, and 
default access. We are going to discuss them in order from most restrictive to least restrictive:

 ■ private: Only accessible within the same class

 ■ default (package private) access: private and other classes in the same package

 ■ protected: default access and child classes

 ■ public: protected and classes in the other packages

Private Access
Private access is easy. Only code in the same class can call private methods or access 
private fields. 



174 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 174

Before we start, take a look at Figure 4.2. It shows the classes we’ll use to explore pri-
vate and default access. The big boxes are the names of the packages. The smaller boxes 
inside them are the classes in each package. You can refer back to this fi gure if you want to 
quickly see how the classes relate.

F I GU R E 4 . 2   Classes used to show private and default access

FatherDuck

pond.duck

pond.swan

BadDuckling

BadCygnet

GoodDuckling

MotherDuck

This is perfectly legal code because everything is one class:

1: package pond.duck;

2: public class FatherDuck {

3:  private String noise = "quack";

4:  private void quack() {

5:    System.out.println(noise);     // private access is ok

6:  }

7:  private void makeNoise() {

8:    quack();                    // private access is ok

9:  } }

So far, so good. FatherDuck makes a call to private method quack() on line 8 and uses 
private instance variable noise on line 5.

Now we add another class:

1: package pond.duck;

2: public class BadDuckling {

3:  public void makeNoise() {

4:    FatherDuck duck = new FatherDuck();

5:    duck.quack();                       // DOES NOT COMPILE

6:    System.out.println(duck.noise);     // DOES NOT COMPILE

7:  } }



Applying Access Modifiers 175

c04.indd 1½  4/2014 Page 175

BadDuckling is trying to access members it has no business touching. On line 5, it tries 
to access a private method in another class. On line 6, it tries to access a private instance 
variable in another class. Both generate compiler errors. Bad duckling!

Our bad duckling is only a few days old and doesn’t know better yet. Luckily, you know 
that accessing private members of other classes is not allowed and you need to use a differ-
ent type of access.

Default (Package Private) Access
Luckily, MotherDuck is more accommodating about what her ducklings can do. She allows 
classes in the same package to access her members. When there is no access modifi er, Java 
uses the default, which is package private access. This means that the member is “private” 
to classes in the same package. In other words, only classes in the package may access it.

package pond.duck;

public class MotherDuck {

  String noise = "quack";

  void quack() {

    System.out.println(noise);     // default access is ok

  }

  private void makeNoise() {

    quack();                    // default access is ok

  } }

MotherDuck can call quack() and refer to noise. After all, members in the same class 
are certainly in the same package. The big difference is MotherDuck lets other classes in the 
same package access members (due to being package private) whereas FatherDuck doesn’t 
(due to being private). GoodDuckling has a much better experience than BadDuckling:

package pond.duck;

public class GoodDuckling {

  public void makeNoise() {

    MotherDuck duck = new MotherDuck();

    duck.quack();                         // default access

    System.out.println(duck.noise);          // default access

  } }

GoodDuckling succeeds in learning to quack() and make noise by copying its mother. 
Notice that all the classes we’ve covered so far are in the same package pond.duck. This 
allows default (package private) access to work.

In this same pond, a swan just gave birth to a baby swan. A baby swan is called a cygnet. 
The cygnet sees the ducklings learning to quack and decides to learn from MotherDuck as well.

package pond.swan;

import pond.duck.MotherDuck;          // import another package



176 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 176

public class BadCygnet {

  public void makeNoise() {

    MotherDuck duck = new MotherDuck();

    duck.quack();                       // DOES NOT COMPILE

    System.out.println(duck.noise);     // DOES NOT COMPILE     

  } }

Oh no! MotherDuck only allows lessons to other ducks by restricting access to the pond
.duck package. Poor little BadCygnet is in the pond.swan package and the code doesn’t 
compile.

Remember that when there is no access modifi er, only classes in the same package can 
access it.

Protected Access
Protected access allows everything that default (package private) access allows and more. 
The protected access modifi er adds the ability to access members of a parent class. We’ll 
cover creating subclasses in depth in Chapter 5. For now, we’ll cover the simplest possible 
use of a child class.

Figure 4.3 shows the many classes we’ll create in this section. There are a number of 
classes and packages, so don’t worry about keeping them all in your head. Just check back 
with this fi gure as you go.

F I GU R E 4 . 3   Classes used to show protected access

pond.duck

GooseWatcher

pond.inland

pond.shore

BirdWatcherFromAfar

BirdWatcher

Bird

pond.goose

Gosling
(extends Bird)

Goose
(extends Bird)

pond.swan

Swan
(extends Bird)



Applying Access Modifiers 177

c04.indd 1½  4/2014 Page 177

First, we create a Bird class and give protected access to its members:

package pond.shore;

public class Bird {

  protected String text = "floating";          // protected access

  protected void floatInWater() {               // protected access

    System.out.println(text);

  } }

Next we create a subclass:

package pond.goose;

import pond.shore.Bird;               // in a different package

public class Gosling extends Bird {     // extends means create subclass

  public void swim() {

    floatInWater();               // calling protected member

    System.out.println(text);     // calling protected member

  } }

This is a very simple subclass. It extends the Bird class. Extending means creating a 
subclass that has access to any protected or public members of the parent class. Running 
this code prints floating twice: once from calling floatInWater() and once from the print 
statement in swim(). Since Gosling is a subclass of Bird, it can access these members even 
though it is in a different package.

Remember that protected also gives us access to everything that default access does. 
This means that a class in the same package as Bird can access its protected members.

package pond.shore;                    // same package as Bird

public class BirdWatcher {

  public void watchBird() {

    Bird bird = new Bird();

    bird.floatInWater();               // calling protected member

    System.out.println(bird.text);     // calling protected member

  } }

Since Bird and BirdWatcher are in the same package, BirdWatcher can access members 
of the bird variable. The defi nition of protected allows access to subclasses and classes in 
the same package. This example uses the same package part of that defi nition.

Now let’s try the same thing from a different package:

package pond.inland;

import pond.shore.Bird;               // different package than Bird

public class BirdWatcherFromAfar {

  public void watchBird() {

    Bird bird = new Bird();

    bird.floatInWater();               // DOES NOT COMPILE



178 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 178

    System.out.println(bird.text);     // DOES NOT COMPILE

  } }

BirdWatcherFromAfar is not in the same package as Bird and it doesn’t inherit from 
Bird. This means that it is not allowed to access protected members of Bird.

Got that? Subclasses and classes in the same package are the only ones 
allowed to access protected members.

There is one gotcha for protected access. Consider this class:

1:  package pond.swan;

2:  import pond.shore.Bird;     // in different package than Bird

3:  public class Swan extends Bird {     // but subclass of bird

4:    public void swim() {

5:      floatInWater();               // package access to superclass

6:      System.out.println(text);     // package access to superclass

7:    }

8:    public void helpOtherSwanSwim() {

9:      Swan other = new Swan();

10:     other.floatInWater();          // package access to superclass

11:     System.out.println(other.text);// package access to superclass

12:   }

13:   public void helpOtherBirdSwim() {

14:     Bird other = new Bird();

15:     other.floatInWater();               // DOES NOT COMPILE

16:     System.out.println(other.text);      // DOES NOT COMPILE

17:   } 

18: }

Take a deep breath. This is interesting. Swan is not in the same package as Bird, but does 
extend it—which implies it has access to the protected members of Bird since it is a sub-
class. And it does. Lines 5 and 6 refer to protected members via inheriting them. 

Lines 10 and 11 also successfully use protected members of Bird. This is allowed 
because these lines refer to a Swan object. Swan inherits from Bird so this is okay. It is sort 
of a two-phase check. The Swan class is allowed to use protected members of Bird and we 
are referring to a Swan object. Granted, it is a Swan object created on line 9 rather than an 
inherited one, but it is still a Swan object.

Lines 15 and 16 do not compile. Wait a minute. They are almost exactly the same as 
lines 10 and 11! There’s one key difference. This time a Bird reference is used. It is created 
on line 14. Bird is in a different package, and this code isn’t inheriting from Bird, so it 
doesn’t get to use protected members. Say what now? We just got through saying repeat-
edly that Swan inherits from Bird. And it does. However, the variable reference isn’t a Swan. 
The code just happens to be in the Swan class.



Applying Access Modifiers 179

c04.indd 1½  4/2014 Page 179

It’s okay to be confused. This is arguably one of the most confusing points on the exam. 
Looking at it a different way, the protected rules apply under two scenarios:

 ■ A member is used without referring to a variable. This is the case on lines 5 and 6. In 
this case, we are taking advantage of inheritance and protected access is allowed.

 ■ A member is used through a variable. This is the case on lines 10, 11, 15, and 16. 
In this case, the rules for the reference type of the variable are what matter. If it is a 
subclass, protected access is allowed. This works for references to the same class or a 
subclass.

We’re going to try this again to make sure you understand what is going on. Can you 
fi gure out why these examples don’t compile?

package pond.goose;

import pond.shore.Bird;

public class Goose extends Bird {

  public void helpGooseSwim() {

    Goose other = new Goose();

    other.floatInWater();

    System.out.println(other.text);

  }

  public void helpOtherGooseSwim() {

    Bird other = new Goose();

    other.floatInWater(); // DOES NOT COMPILE

    System.out.println(other.text); // DOES NOT COMPILE

  } }

The fi rst method is fi ne. In fact, it is equivalent to the Swan example. Goose extends 
Bird. Since we are in the Goose subclass and referring to a Goose reference, it can access 
protected members. The second method is a problem. Although the object happens to be 
a Goose, it is stored in a Bird reference. We are not allowed to refer to members of the Bird 
class since we are not in the same package and Bird is not a subclass of Bird.

What about this one?

package pond.duck;

import pond.goose.Goose;

public class GooseWatcher {

  public void watch() {

    Goose goose = new Goose();

    goose.floatInWater();     // DOES NOT COMPILE

  } }

This code doesn’t compile because we are not in the Goose class. The floatInWater() 
method is declared in Bird. GooseWatcher is not in the same package as Bird, nor does it 



180 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 180

extend Bird. Goose extends Bird. That only lets Goose refer to floatInWater() and not 
callers of Goose.

If this is still puzzling, try it out. Type in the code and try to make it compile. Then 
reread this section. Don’t worry—it wasn’t obvious to the authors the fi rst time either!

Public Access
Protected access was a tough concept. Luckily, the last type of access modifi er is easy: pub-
lic means anyone can access the member from anywhere.

package pond.duck;

public class DuckTeacher {

  public String name = "helpful";     // public access

  public void swim() {               // public access

    System.out.println("swim");

  } }

DuckTeacher allows access to any class that wants it. Now we can try it out:

package pond.goose;

import pond.duck.DuckTeacher;

public class LostDuckling {

  public void swim() {

    DuckTeacher teacher = new DuckTeacher();

    teacher.swim();                                   // allowed

    System.out.println("Thanks" + teacher.name);     // allowed

  } }

LostDuckling is able to refer to swim() and name on DuckTeacher because they are pub-
lic. The story has a happy ending. LostDuckling has learned to swim and can fi nd its par-
ents—all because DuckTeacher made them public.

To review access modifi ers, make sure you know why everything in Table 4.2 is true. 
Remember that a member is a method or fi eld.

TA B LE 4 . 2   Access modifiers

Can access
If that member 
is private?

If that member has 
default (package 
private) access?

If that member 
is protected?

If that 
member is 
public?

Member in the same 
class

Yes Yes Yes Yes

Member in another 
class in same package

No Yes Yes Yes



Applying Access Modifiers 181

c04.indd 1½  4/2014 Page 181

Can access
If that member 
is private?

If that member has 
default (package 
private) access?

If that member 
is protected?

If that 
member is 
public?

Member in a 
 superclass in a 
 different package

No No Yes Yes

Method/field in a non-
superclass class in a 
different package

No No No Yes

Designing Static Methods and Fields
Except for the main() method, we’ve been looking at instance methods. Static methods 
don’t require an instance of the class. They are shared among all users of the class. You can 
think of statics as being a member of the single class object that exist independently of any 
instances of that class.

Does Each Class Have Its Own Copy of the Code?

Each class has a copy of the instance variables. There is only one copy of the code for the 

instance methods. Each instance of the class can call it as many times as it would like. 

However, each call of an instance method (or any method) gets space on the stack for 

method parameters and local variables.

The same thing happens for static methods. There is one copy of the code. Parameters 

and local variables go on the stack.

Just remember that only data gets its “own copy.” There is no need to duplicate copies of 

the code itself.

We have seen one static method since Chapter 1. The main() method is a static method. 
That means you can call it by the classname.

public class Koala {

  public static int count = 0;               // static variable

  public static void main(String[] args) {      // static method

    System.out.println(count);

  }

}

We said that the JVM basically calls Koala.main() to get the program started. You can 
do this too. We can have a KoalaTester that does nothing but call the main() method.



182 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 182

public class KoalaTester {

  public static void main(String[] args) {

    Koala.main(new String[0]);          // call static method

  }

}

Quite a complicated way to print 0, isn’t it? When we run KoalaTester, it makes a call 
to the main() method of Koala, which prints the value of count. The purpose of all these 
examples is to show that main() can be called just like any other static method.

In addition to main() methods, static methods have two main purposes:

 ■ For utility or helper methods that don’t require any object state. Since there is no need 
to access instance variables, having static methods eliminates the need for the caller to 
instantiate the object just to call the method.

 ■ For state that is shared by all instances of a class, like a counter. All instances must 
share the same state. Methods that merely use that state should be static as well.

Let’s look at some examples covering other static concepts.

Calling a Static Variable or Method
Usually, accessing a static member is easy. You just put the classname before the method or 
variable and you are done. For example:

System.out.println(Koala.count);

Koala.main(new String[0]);

Both of these are nice and easy. There is one rule that is trickier. You can use an instance 
of the object to call a static method. The compiler checks for the type of the reference and 
uses that instead of the object—which is sneaky of Java. This code is perfectly legal:

5: Koala k = new Koala();

6: System.out.println(k.count);          // k is a Koala

7: k = null;

8: System.out.println(k.count);          // k is still a Koala

Believe it or not, this code outputs 0 twice. Line 6 sees that k is a Koala and count is a 
static variable, so it reads that static variable. Line 8 does the same thing. Java doesn’t care 
that k happens to be null. Since we are looking for a static, it doesn’t matter.

Remember to look at the reference type for a variable when you see a 
static method or variable. The exam creators will try to trick you into think-
ing a NullPointerException is thrown because the variable happens to be 
null. Don’t be fooled!



Applying Access Modifiers 183

c04.indd 1½  4/2014 Page 183

One more time because this is really important: what does the following output?

Koala.count = 4;

Koala koala1 = new Koala();

Koala koala2 = new Koala();

koala1.count = 6;

koala2.count = 5;

System.out.println(Koala.count);

Hopefully, you answered 5. There is only one count variable since it is static. It is set to 
4, then 6, and fi nally winds up as 5. All the Koala variables are just distractions.

Static vs. Instance
There’s another way the exam creators will try to trick you regarding static and instance 
members. (Remember that “member” means fi eld or method.) A static member cannot call 
an instance member. This shouldn’t be a surprise since static doesn’t require any instances 
of the class to be around.

The following is a common mistake for rookie programmers to make:

public class Static {

  private String name = "Static class";

  public static void first() {  }

  public static void second() {  }

  public void third() {  System.out.println(name); }

  public static void main(String args[]) {

    first();

    second();

    third();          // DOES NOT COMPILE

  } }

The compiler will give you an error about making a static reference to a nonstatic 
method. If we fi x this by adding static to third(), we create a new problem. Can you 
fi gure out what it is?

All this does is move the problem. Now, third() is referring to nonstatic name. Adding 
static to name as well would solve the problem. Another solution would have been to call 
third as an instance method—for example, new Static().third();.

The exam creators like this topic. A static method or instance method can call a static 
method because static methods don’t require an object to use. Only an instance method can 
call another instance method on the same class without using a reference variable, because 
instance methods do require an object. Similar logic applies for the instance and static vari-
ables. Make sure you understand Table 4.3 before continuing.



184 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 184

TA B LE 4 . 3   Static vs. instance calls

Type Calling Legal? How?

Static method Another static method or 
variable

Yes Using the classname

Static method An instance method or 
variable

No

Instance method A static method or variable Yes Using the classname or a 
reference variable

Instance method Another instance method 
or variable

Yes Using a reference variable

Let’s try one more example so you have more practice at recognizing this scenario. Do 
you understand why the following lines fail to compile?

1:  public class Gorilla {

2:    public static int count;

3:    public static void addGorilla() { count++; }

4:    public void babyGorilla() { count++; }

5:    public void announceBabies() {

6:      addGorilla();

7:      babyGorilla();

8:    }

9:    public static void announceBabiesToEveryone() {

10:     addGorilla();

11:     babyGorilla();     // DOES NOT COMPILE

12:   }

13:   public int total;

14:   public static average = total / count;  // DOES NOT COMPILE

15: }

Lines 3 and 4 are fi ne because both static and instance methods can refer to a static 
variable. Lines 5–8 are fi ne because an instance method can call a static method. Line 11 
doesn’t compile because a static method cannot call an instance method. Similarly, line 14 
doesn’t compile because a static variable is trying to use an instance variable.

A common use for static variables is counting the number of instances:

public class Counter {

  private static int count;

  public Counter() { count++; }



Applying Access Modifiers 185

c04.indd 1½  4/2014 Page 185

  public static void main(String[] args) {

    Counter c1 = new Counter();

    Counter c2 = new Counter();

    Counter c3 = new Counter();

    System.out.println(count);          // 3

  }

}

Each time the constructor gets called, it increments count by 1. This example relies on 
the fact that static (and instance) variables are automatically initialized to the default value 
for that type, which is 0 for int. See Chapter 1 to review the default values.

Also notice that we didn’t write Counter.count. We could have. It isn’t necessary 
because we are already in that class so the compiler can infer it.

Static Variables
Some static variables are meant to change as the program runs. Counters are a common 
example of this. We want the count to increase over time. Just as with instance variables, 
you can initialize a static variable on the line it is declared:

public class Initializers {

  private static int counter = 0;          // initialization

}

Other static variables are meant to never change during the program. This type of vari-
able is known as a constant. It uses the final modifi er to ensure the variable never changes. 
static final constants use a different naming convention than other variables. They use 
all uppercase letters with underscores between “words.” For example:

public class Initializers {

  private static final int NUM_BUCKETS = 45;

  public static void main(String[] args) {

     NUM_BUCKETS = 5;  // DOES NOT COMPILE

  } }

The compiler will make sure that you do not accidentally try to update a fi nal variable. 
This can get interesting. Do you think the following compiles?

private static final ArrayList<String> values = new ArrayList<>();

public static void main(String[] args) {

  values.add("changed");

}

It actually does compile. values is a reference variable. We are allowed to call methods 
on reference variables. All the compiler can do is check that we don’t try to reassign the 
final values to point to a different object.



186 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 186

Static Initialization
In Chapter 1, we covered instance initializers that looked like unnamed methods. Just code 
inside braces. Static initializers look similar. They add the static keyword to specify they 
should be run when the class is fi rst used. For example:

private static final int NUM_SECONDS_PER_HOUR;

static {

  int numSecondsPerMinute = 60;

  int numMinutesPerHour = 60;

  NUM_SECONDS_PER_HOUR = numSecondsPerMinute * numMinutesPerHour;

}

The static initializer runs when the class is fi rst used. The statements in it run 
and assign any static variables as needed. There is something interesting about 
this example. We just got through saying that fi nal variables aren’t allowed to 
be reassigned. The key here is that the static initializer is the fi rst assignment. 
And since it occurs up front, it is okay.

Let’s try another example to make sure you understand the distinction:

14: private static int one;

15: private static final int two;

16: private static final int three = 3;

17: private static final int four;     // DOES NOT COMPILE

18: static {

19:   one = 1;

20:   two = 2;

21:   three = 3;     // DOES NOT COMPILE

22:   two = 4;     // DOES NOT COMPILE

23: }

Line 14 declares a static variable that is not fi nal. It can be assigned as many times as we 
like. Line 15 declares a fi nal variable without initializing it. This means we can initialize it 
exactly once in a static block. Line 22 doesn’t compile because this is the second attempt. Line 
16 declares a fi nal variable and initializes it at the same time. We are not allowed to assign it 
again, so line 21 doesn’t compile. Line 17 declares a fi nal variable that never gets initialized. 
The compiler gives a compiler error because it knows that the static blocks are the only place 
the variable could possibly get initialized. Since the programmer forgot, this is clearly an error.

Try to Avoid Static and Instance Initializers

Using static and instance initializers can make your code much harder to read. 

Everything that could be done in an instance initializer could be done in a con-

structor instead. The constructor approach is easier to read.



Applying Access Modifiers 187

c04.indd 1½  4/2014 Page 187

There is a common case to use a static initializer: when you need to initialize a 

static fi eld and the code to do so requires more than one line. This often occurs 

when you want to initialize a collection like an ArrayList. When you do need to 

use a static initializer, put all the static initialization in the same block. That way, 

the order is obvious.

Static Imports
Back in Chapter 1, you saw that we could import a specifi c class or all the classes in a 
package:

import java.util.ArrayList;

import java.util.*;

We could use this technique to import:

import java.util.List;

import java.util.Arrays;

public class Imports {

  public static void main(String[] args) {

    List<String> list = Arrays.asList("one", "two");

  }

}     

Imports are convenient because you don’t need to specify where each class comes 
from each time you use it. There is another type of import called a static import. Regular 
imports are for importing classes. Static imports are for importing static members of 
classes. Just like regular imports, you can use a wildcard or import a specifi c member. The 
idea is that you shouldn’t have to specify where each static method or variable comes from 
each time you use it. An example of when static interfaces shine are when you are referring 
to a lot of constants in another class.

In a large program, static imports can be overused. When importing from 
too many places, it can be hard to remember where each static member 
comes from.

The previous method has one static method call: Arrays.asList. Rewriting the code to 
use a static import yields the following:

import java.util.List;

import static java.util.Arrays.asList;          // static import

public class StaticImports {

  public static void main(String[] args) {

    List<String> list = asList("one", "two");     // no Arrays.

  } }



188 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 188

In this example, we are specifi cally importing the asList method. This means that any 
time we refer to asList in the class, it will call Arrays.asList(). 

An interesting case is what would happen if we created an asList method in our 
StaticImports class. Java would give it preference over the imported one and the method 
we coded would be used.

The exam will try to trick you with misusing static imports. This example shows almost 
everything you can do wrong. Can you fi gure out what is wrong with each one?

1: import static java.util.Arrays; // DOES NOT COMPILE

2: import static java.util.Arrays.asList;

3: static import java.util.Arrays.*;  // DOES NOT COMPILE

4: public class BadStaticImports {

5:   public static void main(String[] args) {

6:    Arrays.asList("one");  // DOES NOT COMPILE

7:  } }

Line 1 tries to use a static import to import a class. Remember that static imports are 
only for importing static members. Regular imports are for importing a class. Line 3 tries 
to see if you are paying attention to the order of keywords. The syntax is import static 
and not vice versa. Line 6 is sneaky. We imported the asList method on line 2. However, 
we did not import the Arrays class anywhere. This makes it okay to write asList("one"); 
but not Arrays.asList("one");.

There’s only one more scenario with static imports. In Chapter 1, you learned that 
importing two classes with the same name gives a compiler error. This is true of static 
imports as well. The compiler will complain if you try to explicitly do a static import of 
two methods with the same name or two static variables with the same name. For example:

import static statics.A.TYPE;

import static statics.B.TYPE;     // DOES NOT COMPILE

Luckily when this happens, we can just refer to the static members via their classname in 
the code instead of trying to use a static import.

Passing Data Among Methods

Java is a “pass-by-value” language. This means that a copy of the variable is made and the 
method receives that copy. Assignments made in the method do not affect the caller. Let’s 
look at an example:

2: public static void main(String[] args) {

3:   int num = 4;

4:   newNumber(5);



Passing Data Among Methods 189

c04.indd 1½  4/2014 Page 189

5:   System.out.println(num);     // 4

6: }

7: public static void newNumber(int num) {

8:   num = 8;

9: }

On line 3, num is assigned the value of 4. On line 4, we call a method. On line 8, the num 
parameter in the method gets set to 8. Although this parameter has the same name as the 
variable on line 3, this is a coincidence. The name could be anything. The exam will often 
use the same name to try to confuse you. The variable on line 3 never changes because no 
assignments are made to it.

Now that you’ve seen primitives, let’s try an example with a reference type. What do you 
think is output by the following code?

public static void main(String[] args) {

  String name = "Webby";

  speak(name);

  System.out.println(name); 

}

public static void speak(String name) {

  name = "Sparky";

}

The correct answer is Webby. Just as in the primitive example, the variable assignment is 
only to the method parameter and doesn’t affect the caller.

Notice how we keep talking about variable assignments. This is because we can call 
methods on the parameters. As an example, we have code that calls a method on the 
StringBuilder passed into the method:

public static void main(String[] args) {

  StringBuilder name = new StringBuilder();

  speak(name);

  System.out.println(name); // Webby

}

public static void speak(StringBuilder s) {

  s.append("Webby");

}

In this case, the output is Webby because the method merely calls a method on the 
parameter. It doesn’t reassign name to a different object. In Figure 4.4, you can see 
how pass-by-value is still used. s is a copy of the variable name. Both point to the same 
StringBuilder, which means that changes made to the StringBuilder are available to 
both references.



190 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 190

F I GU R E 4 . 4   Copying a reference with pass-by-value

StringBuilder
object

name

s

Pass-by-Value vs. Pass-by-Reference

Different languages handle parameters in different ways. Pass-by-value is used by many 

languages, including Java. In this example, the swap method does not change the origi-

nal values. It only changes a and b within the method.

public static void main(String[] args) {

    int original1 = 1;

    int original2 = 2;

    swap(original1, original2);

    System.out.println(original1); // 1

    System.out.println(original2); // 2

}

public static void swap(int a, int b) {

    int temp = a;

    a = b;

    b = temp;

}

The other approach is pass-by-reference. It is used by default in a few languages, such as 

Perl. We aren't going to show you Perl code here because you are studying for the Java 

exam and we don't want to confuse you. The following example is in a made-up language 

that shows pass-by-reference:

original1 = 1;

original2 = 2;

swapByReference(original1, original2);

print(original1); // 2 (not in Java)

print(original2); // 1 (not in Java)

swapByReference(a, b) {

  temp = a;

  a = b;

  b = temp;

}

See the difference? In our made-up language, the caller is affected by variable assign-

ments made in the method.



Overloading Methods 191

c04.indd 1½  4/2014 Page 191

To review, Java uses pass-by-value to get data into a method. Assigning a new primitive 
or reference to a parameter doesn’t change the caller. Calling methods on a reference to an 
object does affect the caller.

Getting data back from a method is easier. A copy is made of the primitive or reference 
and returned from the method. Most of the time, this returned value is used. For example, 
it might be stored in a variable. If the returned value is not used, the result is ignored. 
Watch for this on the exam. Ignored returned values are tricky.

Let’s try an example. Pay attention to the return types.

1: public class ReturningValues {

2:  public static void main(String[] args) {

3:    int number = 1;                           // 1

4:    String letters = "abc";                   // abc

5:    number(number);                           // 1

6:    letters = letters(letters);               // abcd

7:    System.out.println(number + letters);     // 1abcd

8:  }

9:  public static int number(int number) {

10:    number++;

11:    return number;

12:  }

13:  public static String letters(String letters) {

14:    letters += "d";

15:    return letters;

16:  }

17: }

This is a tricky one because there is a lot to keep track of. When you see such questions on 
the exam, write down the values of each variable. Lines 3 and 4 are straightforward assign-
ments. Line 5 calls a method. Line 10 increments the method parameter to 2 but leaves the 
numbers variable in the main() method as 1. While line 11 returns the value, the caller ignores 
it. The method call on line 6 doesn’t ignore the result so letters becomes "abcd". Remember 
that this is happening because of the returned value and not the method parameter.

Overloading Methods

Now that you are familiar with the rules for declaring methods, it is time to look at creat-
ing methods with the same signature in the same class. Method overloading occurs when 
there  are different method signatures with the same name but different type parameters.

We’ve been calling overloaded methods for a while. System.out.println and 
StringBuilder’s append methods provide many overloaded versions so you can pass just 
about anything to them without having to think about it. In both of these examples, the 



192 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 192

only change was the type of the parameter. Overloading also allows different numbers 
of parameters.

Everything other than the method signature can vary for overloaded methods. This 
means there can be different access modifi ers, specifi ers (like static), return types, and 
exception lists.

These are all valid overloaded methods:

public void fly(int numMiles) { }

public void fly(short numFeet) { }

public boolean fly() { return false; }

void fly(int numMiles, short numFeet) { }

public void fly(short numFeet, int numMiles) throws Exception { }

As you can see, we can overload by changing anything in the parameter list. We can 
have a different type, more types, or the same types in a different order. Also notice that 
the access modifi er and exception list are irrelevant to overloading.

Now let’s look at an example that is not valid overloading:

public void fly(int numMiles) { }

public int fly(int numMiles) { }     // DOES NOT COMPILE

This method doesn’t compile because it only differs from the original by return type. 
The parameter lists are the same so they are duplicate methods as far as Java is concerned.

What about these two? Why does the second not compile?

public void fly(int numMiles) { }

public static void fly(int numMiles) { }     // DOES NOT COMPILE

Again, the parameter list is the same. The only difference is that one is an instance 
method and one is a static method.

Calling overloaded methods is easy. You just write code and Java calls the right one. For 
example, look at these two methods:

public void fly(int numMiles) {

  System.out.println("short");

}

public void fly(short numFeet) {

  System.out.println("short");

}

The call fly((short) 1); prints short. It looks for matching types and calls the appro-
priate method. Of course, it can be more complicated than this.

Now that you know the basics of overloading, let’s look at some more complex scenarios 
that you may encounter on the exam.

Overloading and Varargs 
Which method do you think is called if we pass an int[]?

public void fly(int[] lengths) { }

public void fly(int... lengths) { }     // DOES NOT COMPILE



Overloading Methods 193

c04.indd 1½  4/2014 Page 193

Trick question! Remember that Java treats varargs as if they were an array. This means 
that the method signature is the same for both methods. Since we are not allowed to over-
load methods with the same parameter list, this code doesn't compile. Even though the code 
doesn't look the same, it compiles to the same parameter list.

Now that we’ve just gotten through explaining that they are the same, it is time to men-
tion how they are not the same. It shouldn’t be a surprise that you can call either method by 
passing an array:

fly(new int[] { 1, 2, 3 });

However, you can only call the varargs version with stand-alone parameters:

fly(1, 2, 3);

Obviously, this means they don't compile exactly the same. The parameter list is the 
same, though, and that is what you need to know with respect to overloading for the exam.

Autoboxing
In the previous chapter, you saw how Java will convert a primitive int to an object Integer 
to add it to an ArrayList through the wonders of autoboxing. This works for code you 
write too.

public void fly(Integer numMiles) { }

This means calling fly(3); will call the previous method as expected. However, what 
happens if we have both a primitive and an integer version?

public void fly(int numMiles) { }

public void fly(Integer numMiles) { }

Java will match the int numMiles version. Java tries to use the most specifi c parameter 
list it can fi nd. When the primitive int version isn't present, it will autobox. However, when 
the primitive int version is provided, there is no reason for Java to do the extra work of 
autoboxing.

Reference Types
Given the rule about Java picking the most specifi c version of a method that it can, what do 
you think this code outputs?

public class ReferenceTypes {

  public void fly(String s) {

    System.out.print("string ");

  }

  public void fly(Object o) {

    System.out.print("object ");

  }

  public static void main(String[] args) {

    ReferenceTypes r = new ReferenceTypes();



194 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 194

    r.fly("test");

    r.fly(56);

  } }

The answer is "string object". The fi rst call is a String and fi nds a direct match. 
There's no reason to use the Object version when there is a nice String parameter list just 
waiting to be called. The second call looks for an int parameter list. When it doesn't fi nd 
one, it autoboxes to Integer. Since it still doesn't fi nd a match, it goes to the Object one.

Primitives
Primitives work in a way similar to reference variables. Java tries to fi nd the most specifi c 
matching overloaded method. What do you think happens here?

public class Plane {

  public void fly(int i) {

    System.out.print("int ");

  }

  public void fly(long l) {

    System.out.print("long ");

  }

  public static void main(String[] args) {

     Plane p = new Plane();

     p.fly(123);

     p.fly(123L);

  } }

The answer is int long. The fi rst call passes an int and sees an exact match. The sec-
ond call passes a long and also sees an exact match. If we comment out the overloaded 
method with the int parameter list, the output becomes long long. Java has no problem 
calling a larger primitive. However, it will not do so unless a better match is not found.

Note that Java can only accept wider types. An int can be passed to a method taking a 
long parameter. Java will not automatically convert to a narrower type. If you want to pass 
a long to a method taking an int parameter, you have to add a cast to explicitly say nar-
rowing is okay.

Putting It All Together
So far, all the rules for when an overloaded method is called should be logical. Java calls 
the most specifi c method it can. When some of the types interact, the Java rules focus 
on backward compatibility. In Java 1.4 and earlier, autoboxing and varargs didn’t exist. 
Although that was a long time ago, old code still needs to work—which means autoboxing 
and varargs come last when Java looks at overloaded methods. Ready for the offi cial order? 
Table 4.4 lays it out for you.



Overloading Methods 195

c04.indd 1½  4/2014 Page 195

TA B LE 4 . 4   Order Java uses to choose the right overloaded method

Rule Example of what will be chosen for glide(1,2)

Exact match by type public String glide(int i, int j) {} 

Larger primitive type public String glide(long i, long j) {} 

Autoboxed type public String glide(Integer i, Integer j) {} 

Varargs public String glide(int... nums) {} 

Let’s give this a practice run using the rules in Table 4.4. What do you think this 
outputs?

public class Glider2 {

  public static String glide(String s) {

    return "1";

  }

  public static String glide(String... s) {

    return "2";

  }

  public static String glide(Object o) {

    return "3";

  }

  public static String glide(String s, String t) {

    return "4";

  }

  public static void main(String[] args) {

    System.out.print(glide("a"));

    System.out.print(glide("a", "b"));

    System.out.print(glide("a", "b", "c"));

  } }

It prints out 142. The fi rst call matches the signature taking a single String because 
that is the most specifi c match. The second call matches the signature, taking two String 
parameters since that is an exact match. It isn’t until the third call that the varargs version 
is used since there are no better matches.

As accommodating as Java is with trying to fi nd a match, it will only do one 
conversion:

public class TooManyConversions {

  public static void play(Long l) { }



196 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 196

  public static void play(Long... l) { }

  public static void main(String[] args) {

    play(4);     // DOES NOT COMPILE

    play(4L);     // calls the Long version

  } }

Here we have a problem. Java is happy to convert the int 4 to a long 4 or an Integer 4. 
It cannot handle converting in two steps to a long and then to a Long. If we had public 
static void play(Object o) { }, it would match because only one conversion would be 
necessary: from int to Integer. An Integer is an Object, as you’ll see in Chapter 5.

Creating Constructors

As you learned in Chapter 1, a constructor is a special method that matches the name of 
the class and has no return type. Here’s an example:

public class Bunny {

  public Bunny() {

    System.out.println("constructor");

  }

}

The name of the constructor, Bunny, matches the name of the class, Bunny, and there is 
no return type, not even void. That makes this a constructor. Can you tell why these two 
are not valid constructors for the Bunny class?

public bunny() { }     // DOES NOT COMPILE

public void Bunny() { }

The fi rst one doesn't match the classname because Java is case sensitive. Since it doesn't 
match, Java knows it can't be a constructor and is supposed to be a regular method. 
However, it is missing the return type and doesn't compile. The second method is a per-
fectly good method, but is not a constructor because it has a return type.

Constructors are used when creating a new object. This process is called instantiation 
because it creates a new instance of the class. A constructor is called when we write new 
followed by the name of the class we want to instantiate. For example:

new Bunny()

When Java sees the new keyword, it allocates memory for the new object. Java also looks 
for a constructor and calls it.

A constructor is typically used to initialize instance variables. The this keyword tells 
Java you want to reference an instance variable. Most of the time, this is optional. The 
problem is that sometimes there are two variables with the same name. In a constructor, 
one is a parameter and one is an instance variable. If you don’t say otherwise, Java gives 



Creating Constructors 197

c04.indd 1½  4/2014 Page 197

you the one with the most granular scope, which is the parameter. Using this.name tells 
Java you want the instance variable.

Here’s a common way of writing a constructor:

1: public class Bunny {

2:   private String color;

3:   public Bunny(String color) {

4:     this.color = color;

5:  } }

On line 4, we assign the parameter color to the instance variable color. The right 
side of the assignment refers to the parameter because we don’t specify anything 
special. The left side of the assignment uses this to tell Java we want it to use the 
instance variable.

Now let's look at some examples that aren't common but that you might see on the 
exam:

1: public class Bunny {

2:   private String color;

3:   private int height;

4:   private int length;

5:   public Bunny(int length, int theHeight) {

6:     length = this.length;     // backwards – no good!

7:     height = theHeight;          // fine because a different name

8:     this.color = "white";     // fine, but redundant

9:   } 

10: public static void main(String[] args) {

11:  Bunny b = new Bunny(1, 2);

12:  System.out.println(b.length + " " + b.height + " " + b.color);

13:  } }

Line 6 is incorrect and you should watch for it on the exam. The instance variable 
length starts out with a 0 value. That 0 is assigned to the method parameter length. The 
instance variable stays at 0. Line 7 is more straightforward. The parameter theHeight and 
instance variable height have different names. Since there is no naming collision, this is 
not required. Finally, line 8 shows that it is allowed to use this even when there is no dupli-
cation of variable names.

In this section, we’ll look at default constructors, overloading constructors, fi nal fi elds, 
and the order of initialization in a class.

Default Constructor
Every class in Java has a constructor whether you code one or not. If you don’t include any 
constructors in the class, Java will create one for you without any parameters. 



198 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 198

This Java-created constructor is called the default constructor. Sometimes we call it the 
default no-arguments constructor for clarity. Here’s an example:

public class Rabbit {

  public static void main(String[] args) {

    Rabbit rabbit = new Rabbit();          // Calls default constructor

  }

}

In the Rabbit class, Java sees no constructor was coded and creates one. This default 
constructor is equivalent to typing this:

public Rabbit() {}

The default constructor has an empty parameter list and an empty body. It is fi ne for you 
to type this in yourself. However, since it doesn't do anything, Java is happy to supply it for 
you and save you some typing.

We keep saying generated. This happens during the compile step. If you look at the fi le 
with the .java extension, the constructor will still be missing. It is only in the compiled fi le 
with the.class extension that it makes an appearance.

Remember that a default constructor is only supplied if there are no constructors 
present. Which of these classes do you think has a default constructor?

class Rabbit1 {

}

class Rabbit2 {

  public Rabbit2() { }

}

class Rabbit3 {

  public Rabbit3(boolean b) { }

}

class Rabbit4 {

  private Rabbit4() { }

}

Only Rabbit1 gets a default no-argument constructor. It doesn't have a constructor 
coded so Java generates a default no-argument constructor. Rabbit2 and Rabbit3 both have 
public constructors already. Rabbit4 has a private constructor. Since these three classes 
have a constructor defi ned, the default no-argument constructor is not inserted for you.

Let’s take a quick look at how to call these constructors:

1: public class RabbitsMultiply {

2:   public static void main(String[] args) {



Creating Constructors 199

c04.indd 1½  4/2014 Page 199

3:    Rabbit1 r1 = new Rabbit1();

4:    Rabbit2 r2 = new Rabbit2();

5:    Rabbit3 r3 = new Rabbit3(true);

6:    Rabbit4 r4 = new Rabbit4(); // DOES NOT COMPILE

7:   } }

Line 3 calls the generated default no-argument constructor. Lines 4 and 5 call the user-
provided constructors. Line 6 does not compile. Rabbit4 made the constructor private so 
that other classes could not call it.

Having a private constructor in a class tells the compiler not to provide a default no-
argument constructor. It also prevents other classes from instantiating the class. This is 
useful when a class only has static methods or the class wants to control all calls to create 
new instances of itself.

Overloading Constructors
Up to now, you’ve only seen one constructor per class. You can have multiple constructors 
in the same class as long as they have different method signatures. When overloading meth-
ods, the method name and parameter list needed to match. With constructors, the name is 
always the same since it has to be the same as the name of the class. This means construc-
tors must have different parameters in order to be overloaded.

This example shows two constructors:

public class Hamster {

  private String color;

  private int weight;

  public Hamster(int weight) {               // first constructor

    this.weight = weight;

    color = "brown";

  }

  public Hamster(int weight, String color) {     // second constructor

   this.weight = weight;

   this.color = color;

  }

}

One of the constructors takes a single int parameter. The other takes an int and a 
String. These parameter lists are different, so the constructors are successfully overloaded.

There is a problem here, though. There is a bit of duplication. In programming, even a 
bit of duplication tends to turn into a lot of duplication as we keep adding “just one more 



200 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 200

thing.” What we really want is for the fi rst constructor to call the second constructor with 
two parameters. You might be tempted to write this:

public Hamster(int weight) {

  Hamster(weight, "brown");     // DOES NOT COMPILE

}

This will not work. Constructors can be called only by writing new before the name of the 
constructor. They are not like normal methods that you can just call. What happens if we 
stick new before the constructor name?

public Hamster(int weight) {

  new Hamster(weight, "brown");     // Compiles but does not do what we want

}

This attempt does compile. It doesn't do what we want, though. When the constructor 
with one parameter is called, it creates an object with the default weight and color. It then 
constructs a different object with the desired weight and color and ignores the new object. 
That's not what we want. We want weight and color set on the object we are trying to 
instantiate in the fi rst place.

Java provides a solution: this—yes, the same keyword we used to refer to instance vari-
ables. When this is used as if it were a method, Java calls another constructor on the same 
instance of the class.

public Hamster(int weight) {

  this(weight, "brown");

}

Success! Now Java calls the constructor that takes two parameters. weight and color get 
set on this instance.

this() has one special rule you need to know. If you choose to call it, the this() call 
must be the fi rst noncommented statement in the constructor.

3: public Hamster(int weight) {

4:   System.out.println("in constructor");

5:   // ready to call this

6:   this(weight, "brown");     // DOES NOT COMPILE

7: }

Even though a print statement on line 4 doesn't change any variables, it is still a Java state-
ment and is not allowed to be inserted before the call to this(). The comment on line 5 is 
just fi ne. Comments don't run Java statements and are allowed anywhere.



Creating Constructors 201

c04.indd 1½  4/2014 Page 201

Constructor Chaining

Overloaded constructors often call each other. One common technique is to have each 

constructor add one parameter until getting to the constructor that does all the work. 

This approach is called constructor chaining. In this example, all three constructors are 

chained.

public class Mouse {

   private int numTeeth;

   private int numWhiskers;

   private int weight;

   public Mouse(int weight) {

     this(weight, 16); // calls constructor with 2 parameters

   }

   public Mouse(int weight, int numTeeth) {

    this(weight, numTeeth, 6); // calls constructor with 3 parameters

   }

   public Mouse(int weight, int numTeeth, int numWhiskers) {

     this.weight = weight;

     this.numTeeth = numTeeth;

     this.numWhiskers = numWhiskers;

   }

   public void print() {

     System.out.println(weight + " " + numTeeth + " " + numWhiskers);

   }

   public static void main(String[] args) {

     Mouse mouse = new Mouse(15);

     mouse.print();

   }

}

This code prints 15 16 6. The main() method calls the constructor with one param-
eter. That constructor adds a second hard-coded value and calls the constructor with two 
parameters. That constructor adds one more hard-coded value and calls the constructor 
with three parameters. The three-parameter constructor assigns the instance variables.



202 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 202

Final Fields
As you saw earlier in the chapter, final instance variables must be assigned a value exactly 
once. We saw this happen in the line of the declaration and in an instance initializer. There 
is one more location this assignment can be done: in the constructor.

public class MouseHouse {

  private final int volume;

  private final String name = "The Mouse House";

  public MouseHouse(int length, int width, int height) {

   volume = length * width * height;

  }}

The constructor is part of the initialization process, so it is allowed to assign final 
instance variables in it. By the time the constructor completes, all final instance variables 
must have been set.

Order of Initialization
Chapter 1 covered the order of initialization. Now that you’ve learned about static initializers, 
it is time to revisit that. Unfortunately, you do have to memorize this list. We’ll give you lots of 
practice, but you do need to know this order by heart.

1. If there is a superclass, initialize it first (we’ll cover this rule in the next chapter. For 
now, just say “no superclass” and go on to the next rule.)

2. Static variable declarations and static initializers in the order they appear in the file.

3. Instance variable declarations and instance initializers in the order they appear in the file.

4. The constructor.
Let’s try the fi rst example:

1: public class InitializationOrderSimple {

2:   private String name = "Torchie";

3:   { System.out.println(name); }

4:   private static int COUNT = 0;

5:   static { System.out.println(COUNT); }

6:   static { COUNT += 10; System.out.println(COUNT); }

7:   public InitializationOrderSimple() {

8:     System.out.println("constructor");

9:   } }

1: public class CallInitializationOrderSimple {

2:   public static void main(String[] args) {



Creating Constructors 203

c04.indd 1½  4/2014 Page 203

3:     InitializationOrderSimple init = new InitializationOrderSimple();

4:   } }

The output is:
0

10

Torchie

constructor

Let's look at why. Rule 1 doesn't apply because there is no superclass. Rule 2 says to run 
the static variable declarations and static initializers—in this case, lines 5 and 6, which 
output 0 and 10. Rule 3 says to run the instance variable declarations and instance initial-
izers—here, lines 2 and 3, which output Torchie. Finally, rule 4 says to run the construc-
tor—here, lines 7–9, which output constructor.

The next example is a little harder. Keep in mind that the four rules apply only if an 
object is instantiated. If the class is referred to without a new call, only rules 1 and 2 apply. 
The other two rules relate to instances and constructors. They have to wait until there is 
code to instantiate the object.

What do you think happens here?

1: public class InitializationOrder {

2:   private String name = "Torchie";

3:   { System.out.println(name); }

4:   private static int COUNT = 0;

5:   static { System.out.println(COUNT); }

6:   { COUNT++;  System.out.println(COUNT); }

7:   public InitializationOrder() {

8:     System.out.println("constructor");

9:   }

10:  public static void main(String[] args) {

11:    System.out.println("read to construct");

12:    new InitializationOrder();

13:  }

14: }

The output looks like this:

0

read to construct

Torchie

1

constructor



204 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 204

Again, rule 1 doesn’t apply because there is no superclass. Rule 2 tells us to look at the 
static variables and static initializers—lines 4 and 5, in that order. Line 5 outputs 0. 
Now that the statics are out of the way, the main() method can run. Next, we can use rule 
3 to run the instance variables and instance initializers. Here that is lines 2 and 3, which 
output Torchie. Finally, rule 4 says to run the constructor—in this case, lines 7–9, which 
output constructor.

We are going to try one more example. This one is as hard as it gets. If you understand 
the output of this next one, congratulations on a job well done; if not, don’t worry. Write 
some programs to play with this. Try typing in the examples in this section and making 
minor changes to see what happens. For example, you might try commenting out part of 
the code. This will give you a better feel for what is going on. Then come back and reread 
this section to try the examples.

Ready for the tough example? Here it is:

1: public class YetMoreInitializationOrder {

2:   static { add(2); }

3:   static void add(int num) { System.out.print(num + " "); }

4:   YetMoreInitializationOrder() { add(5); }

5:   static { add(4); }

6:   { add(6); }

7:   static { new YetMoreInitializationOrder(); }

8:   { add(8); }

9:   public static void main(String[] args) { } }

The correct answer is 2 4 6 8 5. Let's walk through why that is. There is no superclass, 
so we jump right to rule 2—the statics. There are three static blocks: on lines 2, 5, and 7. 
They run in that order. The static block on line 2 calls the add() method, which prints 2. 
The static block on line 5 calls the add() method, which prints 4. The last static block, 
on line 7, calls new to instantiate the object. This means we can go on to rule 3 to look at 
the instance variables and instance initializers. There are two of those: on lines 6 and 8. 
They both call the add() method and print 6 and 8, respectively. Finally, we go on to rule 4 
and call the constructor, which calls the add() method one more time and prints 5.

This example is tricky for a few reasons. There’s a lot to keep track of. Also, the ques-
tion has a lot of one-line code blocks and methods, making it harder to visualize which is 
a block. Luckily, questions like this are rare on the exam. If you see one, just write down 
what is going on as you read the code.



Encapsulating Data 205

c04.indd 1½  4/2014 Page 205

Encapsulating Data

In Chapter 1, we had an example of a class with a fi eld that wasn’t private:

public class Swan {

  int numberEggs;     // instance variable

}

Why do we care? Since there is default (package private) access, that means any class 
in the package can set numberEggs. We no longer have control of what gets set in our own 
class. A caller could even write this:

    mother.numberEggs = -1;   

This is clearly no good. We do not want the mother Swan to have a negative number of 
eggs! 

Encapsulation to the rescue. Encapsulation means we set up the class so only methods 
in the class with the variables can refer to the instance variables. Callers are required to use 
these methods. Let’s take a look at our newly encapsulated Swan class:
1: public class Swan {

2:  private int numberEggs;                    // private

3:  public int getNumberEggs() {                    // getter

4:    return numberEggs;

5:  }

6:  public void setNumberEggs(int numberEggs) {     // setter

7:    if (numberEggs >= 0)                     // guard condition

8:      this.numberEggs = numberEggs;

9:  } }

Note numberEggs is now private on line 2. This means only code within the class can 
read or write the value of numberEggs. Since we wrote the class, we know better than to 
set a negative number of eggs. We added a method on lines 3–5 to read the value, which is 
called an accessor method or a getter. We also added a method on lines 6–9 to update the 
value, which is called a mutator method or a setter. The setter has an if statement in this 
example to prevent setting the instance variable to an invalid value. This guard condition 
protects the instance variable.

On line 8, we used the this keyword that we saw in constructors to differentiate between 
the method parameter numberEggs and the instance variable numberEggs.

For encapsulation, remember that data (an instance variable) is private and getters/setters 
are public. Java defi nes a naming convention that is used in JavaBeans. JavaBeans are reusable 
software components. JavaBeans call an instance variable a property. The only thing you need 
to know about JavaBeans for the exam is the naming conventions listed in Table 4.5.



206 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 206

TA B LE 4 .5   Rules for JavaBeans naming conventions

Rule Example

Properties are private. private int numEggs;

Getter methods begin with is if the 
property is a boolean.

public boolean isHappy() { 

  return happy; 

}

Getter methods begin with get if the 
property is not a boolean.

public int getNumEggs() { 

  return numEggs; 

}

Setter methods begin with set. public void setHappy(boolean happy) { 

  this.happy = happy; 

}

The method name must have a prefix 
of set/get/is, followed by the first 
letter of the property in uppercase, fol-
lowed by the rest of the property name.

public void setNumEggs(int num) { 

  numEggs = num;

}

From the last example in Table 4.5, you noticed that you can name the method param-
eter to set anything you want. Only the method name and property name have naming 
conventions here. 

It’s time for some practice. See if you can fi gure out which lines follow JavaBeans 
naming conventions:

12: private boolean playing;

13: private String name;

14: public boolean getPlaying() { return playing; }

15: public boolean isPlaying() { return playing; }

16: public String name() { return name; }

17: public void updateName(String n) { name = n; }

18: public void setname(String n) { name = n; }

Lines 12 and 13 are good. They are private instance variables. Line 14 doesn't follow the 
JavaBeans naming conventions. Since playing is a boolean, the getter must begin with is. 
Line 15 is a correct getter for playing. Line 16 doesn't follow the JavaBeans naming con-
ventions because it should be called getName. Lines 17 and 18 do not follow the JavaBeans 
naming conventions because they should be named setName. Remember that Java is case 
sensitive, so setname is not adequate to meet the naming convention.



Encapsulating Data 207

c04.indd 1½  4/2014 Page 207

Creating Immutable Classes
Encapsulating data is helpful because it prevents callers from making uncontrolled changes 
to your class. Another common technique is making classes immutable so they cannot be 
changed at all.

Immutable classes are helpful because you know they will always be the same. You can 
pass them around your application with a guarantee that the caller didn’t change anything. 
This helps make programs easier to maintain. It also helps with performance by limiting 
the number of copies, as you saw with String in Chapter 3, “Core Java APIs.” 

One step in making a class immutable is to omit the setters. But wait: we still want the 
caller to be able to specify the initial value—we just don’t want it to change after the object 
is created. Constructors to the rescue!

public class ImmutableSwan {

  private int numberEggs;

  public ImmutableSwan(int numberEggs) {

    this.numberEggs = numberEggs;

  }

  public int getNumberEggs() {

    return numberEggs;

  } }

In this example, we don't have a setter. We do have a constructor that allows a value to 
be set. Remember, immutable is only measured after the object is constructed. Immutable 
classes are allowed to have values. They just can't change after instantiation.

Return Types in Immutable Classes

When you are writing an immutable class, be careful about the return types. On the 

surface, this class appears to be immutable since there is no setter:

public class NotImmutable {

   private StringBuilder builder;

   public NotImmutable(StringBuilder b) {

     builder = b;

   }

   public StringBuilder getBuilder() {

     return builder;

   } }

The problem is that it isn’t really. Consider this code snippet:

continues



208 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 208

StringBuilder sb = new StringBuilder("initial");

NotImmutable problem = new NotImmutable(sb);

sb.append(" added");

StringBuilder gotBuilder = problem.getBuilder();

gotBuilder.append(" more");

System.out.println(problem.getBuilder());

This outputs "initial added more"—clearly not what we were intending. The problem 
is that we are just passing the same StringBuilder all over. The caller has a reference since 
it was passed to the constructor. Anyone who calls the getter gets a reference too.
A solution is to make a copy of the mutable object. This is called a defensive copy.

public Mutable(StringBuilder b) {

  builder = new StringBuilder(b);

}

public StringBuilder getBuilder() {

  return new StringBuilder(builder);

}

Now the caller can make changes to the initial sb object and it is fi ne. Mutable no longer 

cares about that object after the constructor gets run. The same goes for the getter: call-

ers can change their StringBuilder without affecting Mutable.

Another approach for the getter is to return an immutable object:

public String getValue() {

  return builder.toString();

}

There’s no rule that says we have to return the same type as we are storing. String is 

safe to return because it is immutable in the fi rst place.

To review, encapsulation refers to preventing callers from changing the instance variables 
directly. Immutability refers to preventing callers from changing the instance variables at all.

Writing Simple Lambdas

Java is an object-oriented language at heart. You’ve seen plenty of objects by now. In Java 
8, the language added the ability to write code using another style. Functional program-
ming is a way of writing code more declaratively. You specify what you want to do rather 
than dealing with the state of objects. You focus more on expressions than loops.

Functional programming uses lambda expressions to write code. A lambda expression 
is a block of code that gets passed around. You can think of a lambda expression as an 

continued



Writing Simple Lambdas 209

c04.indd 1½  4/2014 Page 209

anonymous method. It has parameters and a body just like full-fl edged methods do, but it 
doesn’t have a name like a real method. Lambda expressions are often referred to as lamb-
das for short. You might also know them as closures if Java isn’t your fi rst language. If you 
had a bad experience with closures in the past, don’t worry. They are far simpler in Java.

In other words, a lambda expression is like a method that you can pass as if it were a 
variable. For example, there are different ways to calculate age. One human year is equiva-
lent to seven dog years. You want to write a method that that takes an age() method as 
input. To do this in an object-oriented program, you’d need to defi ne a Human subclass and a 
Dog subclass. With lambdas, you can just pass in the relevant expression to calculate age.

Lambdas allow you to write powerful code in Java. Only the simplest lambda expres-
sions are on the OCA exam. The goal is to get you comfortable with the syntax and the 
concepts. This means you aren’t truly doing functional programming yet. You’ll see 
lambdas again on the OCP exam.

In this section, we’ll cover an example of why lambdas are helpful, the syntax of 
lambdas, and how to use predicates.

Lambda Example
Our goal is to print out all the animals in a list according to some criteria. We’ll show you 
how to do this without lambdas to illustrate how lambdas are useful. We start out with the 
Animal class:

public class Animal {

  private String species;

  private boolean canHop;

  private boolean canSwim;

  public Animal(String speciesName, boolean hopper, boolean swimmer) {

    species = speciesName;

    canHop = hopper;

    canSwim = swimmer;

  }

   public boolean canHop() { return canHop; }

   public boolean canSwim() { return canSwim; }

   public String toString() { return species; }

}

The Animal class has three instance variables, which are set in the constructor. It has 
two methods that get the state of whether the animal can hop or swim. It also has a 
toString() method so we can easily identify the Animal in programs.

We plan to write a lot of different checks, so we want an interface. You’ll learn more 
about interfaces in the next chapter. For now, it is enough to remember that an interface 
specifi es the methods that our class needs to implement:

public interface CheckTrait {

  boolean test(Animal a);

}



210 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 210

The fi rst thing we want to check is whether the Animal can hop. We provide 
a class that can check this:

public class CheckIfHopper implements CheckTrait {

  public boolean test(Animal a) {

    return a.canHop();

  }

}

This class may seem simple—and it is. This is actually part of the problem that lambdas 
solve. Just bear with us for a bit. Now we have everything that we need to write our code to 
fi nd the Animals that hop:

1: public class TraditionalSearch {

2:   public static void main(String[] args) {

3:     List<Animal> animals = new ArrayList<Animal>();  // list of animals

4:     animals.add(new Animal("fish", false, true));

5:     animals.add(new Animal("kangaroo", true, false));

6:     animals.add(new Animal("rabbit", true, false));

7:     animals.add(new Animal("turtle", false, true));

8:     

9:     print(animals, new CheckIfHopper());      // pass class that does check

10:   }

11:  private static void print(List<Animal> animals, CheckTrait checker) {

12:     for (Animal animal : animals) {

13:       if (checker.test(animal))               // the general check

14:         System.out.print(animal + " ");

15:     }

16:     System.out.println();

17:   }

18: }

The print() method on line 11 method is very general—it can check for any trait. This 
is good design. It shouldn’t need to know what specifi cally we are searching for in order to 
print a list of animals.

Now what happens if we want to print the Animals that swim? Sigh. We need to write 
another class CheckIfSwims. Granted, it is only a few lines. Then we need to add a new line 
under line 9 that instantiates that class. That’s two things just to do another check.

Why can’t we just specify the logic we care about right here? Turns out that we can with 
lambda expressions. We could repeat that whole class here and make you fi nd the one line 
that changed. Instead, we’ll just show you. We could replace line 9 with the following, which 
uses a lambda:

9:    print(animals, a -> a.canHop());



Writing Simple Lambdas 211

c04.indd 1½  4/2014 Page 211

Don’t worry that the syntax looks a little funky. You’ll get used to it and we’ll describe it 
in the next section. We’ll also explain the bits that look like magic. For now, just focus on 
how easy it is to read. We are telling Java that we only care about Animals that can hop.

It doesn’t take much imagination to fi gure how we would add logic to get the Animals 
that can swim. We only have to add one line of code—no need for an extra class to do 
something simple. Here’s that other line:

print(animals, a -> a.canSwim());

How about Animals that cannot swim?

print(animals, a -> ! a.canSwim());

The point here is that it is really easy to write code that uses lambdas once you get the 
basics in place. This code uses a concept called deferred execution. Deferred execution 
means that code is specifi ed now but will run later. In this case, later is when the print() 
method calls it.

Lambda Syntax
One of the simplest lambda expressions you can write is the one you just saw:

a -> a.canHop();

This means that Java should call a method with an Animal parameter that returns a 
boolean value that’s the result of a.canHop(). We know all this because we wrote the code. 
But how does Java know?

Java replies on context when fi guring out what lambda expressions mean. We are pass-
ing this lambda as the second parameter of the print() method. That method expects a 
CheckTrait as the second parameter. Since we are passing a lambda instead, Java tries to 
map our lambda to that interface:

boolean test(Animal a);

Since that interface’s method takes an Animal, that means the lambda parameter has to 
be an Animal. And since that interface’s method returns a boolean, we know the lambda 
returns a boolean.

The syntax of lambdas is tricky because many parts are optional. These two lines do the 
exact same thing:

a -> a.canHop()

(Animal a) -> { return a.canHop(); }

Let’s look at what is going on here. The first example, shown in Figure 4.5, has 
three parts:

 ■ Specify a single parameter with the name a

 ■ The arrow operator to separate the parameter and body

 ■ A body that calls a single method and returns the result of that method



212 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 212

F I GU R E 4 .5   Lambda syntax omitting optional parts

a -> a.canHop()

parameter name body

arrow

The second example also has three parts; it’s just more verbose (see 
Figure 4.6):

 ■ Specify a single parameter with the name a and stating the type is Animal

 ■ The arrow operator to separate the parameter and body

 ■ A body that has one or more lines of code, including a semicolon and a return statement

F I GU R E 4 .6   Lambda syntax, including optional parts

(Animal a) -> { return a.canHop(); }

required because in block

parameter name

optional parameter type

body

arrow

The parentheses can only be omitted if there is a single parameter and its type is not 
explicitly stated. Java does this because developers commonly use lambda expressions this 
way and they can do as little typing as possible.

It shouldn’t be news to you that we can omit braces when we only have a single state-
ment. We did this with if statements and loops already. What is different here is that the 
rules change when you omit the braces. Java doesn’t require you to type return or use 
a semicolon when no braces are used. This special shortcut doesn’t work when we have 
two or more statements. At least this is consistent with using {} to create blocks of code 
elsewhere.

Let’s look at some examples of valid lambdas. Pretend that there are valid interfaces that 
can consume a lambda with zero, one, or two String parameters.

3: print(() -> true);                                       // 0 parameters

4: print(a -> a.startsWith("test"));                        // 1 parameter

5: print((String a) -> a.startsWith("test"));               // 1 parameter

6: print((a, b) -> a.startsWith("test"));                   // 2 parameters

7: print((String a, String b) -> a.startsWith("test"));     // 2 parameters



Writing Simple Lambdas 213

c04.indd 1½  4/2014 Page 213

Notice that all of these examples have parentheses around the parameter list except the 
one that takes only one parameter and doesn’t specify the type. Line 3 takes 0 parameters 
and always returns the Boolean true. Line 4 takes one parameter and calls a method on 
it, returning the result. Line 5 does the same except that it explicitly defi nes the type of the 
variable. Lines 6 and 7 take two parameters and ignore one of them—there isn’t a rule that 
says you must use all defi ned parameters.

Now let’s make sure you can identify invalid syntax. Do you see what’s wrong with each 
of these?

print(a, b -> a.startsWith("test"));                       // DOES NOT COMPILE

print(a -> { a.startsWith("test"); });               // DOES NOT COMPILE

print(a -> { return a.startsWith("test") });         // DOES NOT COMPILE

The fi rst line needs parentheses around the parameter list. Remember that the parenthe-
ses are only optional when there is one parameter and it doesn’t have a type declared. The 
second line is missing the return keyword. The last line is missing the semicolon.

You might have noticed all of our lambdas return a boolean. That is because the scope 
for the OCA exam limits what you need to learn. 

What Variables Can My Lambda Access?

Lambdas are allowed to access variables. This topic isn’t on the OCA exam, but you may 

come across it when practicing. Lambdas are allowed to access variables. Here’s an 

example:

boolean wantWhetherCanHop = true;

print(animals, a -> a.canHop() == wantWhetherCanHop);

The trick is that they cannot access all variables. Instance and static variables are okay. 

Method parameters and local variables are fi ne if they are not assigned new values.

There is one more issue you might see with lambdas. We’ve been defi ning an argument 
list in our lambda expressions. Since Java doesn’t allow us to redeclare a local variable, the 
following is an issue:

(a, b) -> { int a = 0; return 5;}     // DOES NOT COMPILE

We tried to redeclare a, which is not allowed. By contrast, the following line is okay 
because it uses a different variable name:

(a, b) -> { int c = 0; return 5;}



214 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 214

Predicates
In our earlier example, we created an interface with one method:

boolean test(Animal a);

Lambdas work with interfaces that have only one method. These are called functional 
interfaces—interfaces that can be used with functional programming. (It’s actually more 
complicated than this, but for the OCA exam this defi nition is fi ne.)

You can imagine that we’d have to create lots of interfaces like this to use lambdas. We 
want to test Animals and Strings and Plants and anything else that we come across.

Luckily, Java recognizes that this is a common problem and provides such an interface 
for us. It’s in the package java.util.function and the gist of it is as follows:

public interface Predicate<T> {

  boolean test(T t);

}

That looks a lot like our method. The only difference is that it uses this type T instead of 
Animal. That’s the syntax for generics. It’s like when we created an ArrayList and got to 
specify any type that goes in it.

This means we don’t need our own interface anymore and can put everything 
related to our search in one class:

1: import java.util.*;

2: import java.util.function.*;

3: public class PredicateSearch {

4:   public static void main(String[] args) {

5:     List<Animal> animals = new ArrayList<Animal>();

6:     animals.add(new Animal("fish", false, true));

7:           

8:     print(animals, a -> a.canHop());

9:   }

10:   private static void print(List<Animal> animals, Predicate<Animal>↵
checker) {

11:    for (Animal animal : animals) {

12:      if (checker.test(animal))

13:         System.out.print(animal + " ");

14:     }

15:     System.out.println();

16:  }

17: }

This time, line 10 is the only one that changed. We expect to have a 
Predicate passed in that uses type Animal. Pretty cool. We can just use it with-
out having to write extra code.



Summary 215

c04.indd 1½  4/2014 Page 215

Java 8 even integrated the Predicate interface into some existing classes. There is only 
one you need to know for the exam. ArrayList declares a removeIf() method that takes a 
Predicate. Imagine we have a list of names for pet bunnies. We decide we want to remove 
all of the bunny names that don’t begin with the letter h because our little cousin really 
wants us to choose an H name. We could solve this problem by writing a loop. Or we could 
solve it in one line:

3: List<String> bunnies = new ArrayList<>();

4: bunnies.add("long ear");

5: bunnies.add("floppy");

6: bunnies.add("hoppy");

7: System.out.println(bunnies);     // [long ear, floppy, hoppy]

8: bunnies.removeIf(s -> s.charAt(0) != 'h');

9: System.out.println(bunnies);     // [hoppy]

Line 8 takes care of everything for us. It defi nes a predicate that takes a String and 
returns a boolean. The removeIf() method does the rest.

For the OCA exam, you only need to know how to implement lambda expressions that 
use the Predicate interface. Remember the one method in the interface called test()? It 
takes any one reference type parameter and returns a boolean. Functional programming 
is a large topic and just the basics are covered. On the OCP exam, you’ll learn how to get 
rid of the loop entirely for more than just removeIf(). You’ll also learn the rules for imple-
menting your own functional interfaces as we did with CheckTrait.

Summary

As you learned in this chapter, Java methods start with an access modifi er of public, 
private, protected or blank (default access). This is followed by an optional specifi er such 
as static, final, or abstract. Next comes the return type, which is void or a Java type. 
The method name follows, using standard Java identifi er rules. Zero or more parameters go 
in parentheses as the parameter list. Next come any optional exception types. Finally, zero 
or more statements go in braces to make up the method body.

Using the private keyword means the code is only available from within the same class. 
Default (package private) access means the code is only available from within the same 
package. Using the protected keyword means the code is available from the same package 
or subclasses. Using the public keyword means the code is available from anywhere. Static 
methods and static variables are shared by the class. When referenced from outside the 
class, they are called using the classname—for example, StaticClass.method(). Instance 
members are allowed to call static members, but static members are not allowed to call 
instance members. Static imports are used to import static members.

Java uses pass-by-value, which means that calls to methods create a copy of the parameters. 
Assigning new values to those parameters in the method doesn’t affect the caller’s variables. 



216 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 216

Calling methods on objects that are method parameters changes the state of those objects and 
is refl ected in the caller.

Overloaded methods are methods with the same name but a different parameter list. 
Java calls the most specifi c method it can fi nd. Exact matches are preferred, followed by 
wider primitives. After that comes autoboxing and fi nally varargs.

Constructors are used to instantiate new objects. The default no-argument constructor 
is called when no constructor is coded. Multiple constructors are allowed and can call each 
other by writing this(). If this() is present, it must be the fi rst statement in the constructor. 
Constructors can refer to instance variables by writing this before a variable name to indi-
cate they want the instance variable and not the method parameter with that name. The order 
of initialization is the superclass (which we will cover in Chapter 5); static variables and static 
initializers in the order they appear; instance variables and instance initializers in the order 
they appear; and fi nally the constructor.

Encapsulation refers to preventing callers from changing the instance variables directly. 
This is done by making instance variables private and getters/setters public. Immutability 
refers to preventing callers from changing the instance variables at all. This uses several 
techniques, including removing setters. JavaBeans use methods beginning with is and get 
for boolean and non-boolean property types, respectively. Methods beginning with set are 
used for setters.

Lambda expressions, or lambdas, allow passing around blocks of code. The full syntax 
looks like (String a, String b) -> { return a.equals(b); }. The parameter types can 
be omitted. When only one parameter is specifi ed without a type, the parentheses can also 
be omitted. The braces and return statement can be omitted for a single statement, making 
the short form (a -> a.equals(b). Lambdas are passed to a method expecting an inter-
face with one method. Predicate is a common interface. It has one method named test 
that returns a boolean and takes any type. The removeIf() method on ArrayList takes a 
Predicate.

Exam Essentials

Be able to identify correct and incorrect method declarations.  A sample method signature 
is public static void method(String... args) throws Exception {}.

Identify when a method or field is accessible.  Recognize when a method or fi eld is 
accessed when the access modifi er (private, protected, public, or default access) does not 
allow it.

Recognize valid and invalid uses of static imports.  Static imports import static members. 
They are written as import static, not static import. Make sure they are importing static 
methods or variables rather than classnames.

State the output of code involving methods.  Identify when to call static rather than 
instance methods based on whether the classname or object comes before the method. 



Exam Essentials 217

c04.indd 1½  4/2014 Page 217

Recognize the correct overloaded method. Exact matches are used fi rst, followed by wider 
primitives, followed by autoboxing, followed by varargs. Assigning new values to method 
parameters does not change the caller, but calling methods on them does.

Evaluate code involving constructors.  Constructors can call other constructors by call-
ing this() as the fi rst line of the constructor. Recognize when the default constructor is 
provided. Remember the order of initialization is the superclass, static variables/initializers, 
instance variables/initializers, and the constructor.

Be able to recognize when a class is properly encapsulated.  Look for private instance 
variables and public getters and setters when identifying encapsulation.

Write simple lambda expressions.  Look for the presence or absence of optional elements 
in lambda code. Parameter types are optional. Braces and the return keyword are optional 
when the body is a single statement. Parentheses are optional when only one parameter is 
specifi ed and the type is implicit. The Predicate interface is commonly used with lambdas 
because it declares a single method called test(), which takes one parameter.



218 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 218

Review Questions

1. Which of the following can fill in the blank in this code to make it compile? (Choose all 
that apply)
public class Ant {

  _____ void method() { }

}

A. default

B. final

C. private

D. Public

E. String

F. zzz:

2. Which of the following compile? (Choose all that apply)

A. final static void method4() { }

B. public final int void method() { }

C. private void int method() { }

D. static final void method3() { }

E. void final method() {}

F. void public method() { }

3. Which of the following methods compile? (Choose all that apply)

A. public void methodA() {  return;}

B. public void methodB() {  return null;}

C. public void methodD() {}

D. public int methodD() {  return 9;}

E. public int methodE() {  return 9.0;}

F. public int methodF() {  return;}

G. public int methodG() {  return null;}

4. Which of the following compile? (Choose all that apply)

A. public void moreA(int... nums) {}

B. public void moreB(String values, int... nums) {}

C. public void moreC(int... nums, String values) {}

D. public void moreD(String... values, int... nums) {}

E.  public void moreE(String[] values, ...int nums) {}

F. public void moreF(String... values, int[] nums) {}

G. public void moreG(String[] values, int[] nums) {}



Review Questions 219

c04.indd 1½  4/2014 Page 219

5. Given the following method, which of the method calls return 2? (Choose all that apply)
public int howMany(boolean b, boolean... b2) {

  return b2.length;

}

A. howMany();

B. howMany(true);

C. howMany(true, true);

D. howMany(true, true, true);

E. howMany(true, {true});

F. howMany(true, {true, true});

G. howMany(true, new boolean[2]);

6. Which of the following are true? (Choose all that apply)

A. Package private access is more lenient than protected access.

B. A public class that has private fields and package private methods is not visible to 
classes outside the package.

C. You can use access modifiers so only some of the classes in a package see a particular 
package private class.

D. You can use access modifiers to allow read access to all methods, but not any instance 
variables.

E. You can use access modifiers to restrict read access to all classes that begin with the 
word Test.

7. Given the following my.school.ClassRoom and my.city.School class definitions, which 
line numbers in main() generate a compiler error? (Choose all that apply)
1: package my.school;

2: public class Classroom {

3:   private int roomNumber;

4:   protected String teacherName;

5:   static int globalKey = 54321;

6:   public int floor = 3;

7:   Classroom(int r, String t) {

8:     roomNumber = r;

9:     teacherName = t; } }

1: package my.city;

2: import my.school.*;

3: public class School {

4:   public static void main(String[] args) {

5:     System.out.println(Classroom.globalKey);

6:     Classroom room = new Classroom(101, ""Mrs. Anderson");



220 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 220

7:     System.out.println(room.roomNumber);

8:     System.out.println(room.floor);

9:     System.out.println(room.teacherName); } }

A. None, the code compiles fine.

B. Line 5

C. Line 6

D. Line 7

E. Line 8

F. Line 9

8. Which of the following are true? (Choose all that apply)

A. Encapsulation uses package private instance variables.

B. Encapsulation uses private instance variables.

C. Encapsulation allows setters.

D. Immutability uses package private instance variables.

E. Immutability uses private instance variables.

F. Immutability allows setters.

9. Which are methods using JavaBeans naming conventions for accessors and mutators? 
(Choose all that apply)

A. public boolean getCanSwim() {  return canSwim;}

B. public boolean canSwim() {  return numberWings;}

C. public int getNumWings() {  return numberWings;}

D. public int numWings()    {  return numberWings;}

E. public void setCanSwim(boolean b) {  canSwim = b;}

10. What is the output of the following code? 
1: package rope;

2: public class Rope {

3:  public static int LENGTH = 5;

4:  static { 

5:    LENGTH = 10;

6:  }



Review Questions 221

c04.indd 1½  4/2014 Page 221

7:  public static void swing() {

8:    System.out.print("swing ");

9:  }

10: }

1: import rope.*;

2: import static rope.Rope.*;

3: public class Chimp {

4:  public static void main(String[] args) {

5:    Rope.swing();

6:    new Rope().swing();

7:    System.out.println(LENGTH);

8:  } 

9: }

A. swing swing 5

B. swing swing 10

C. Compiler error on line 2 of Chimp.

D. Compiler error on line 5 of Chimp.

E. Compiler error on line 6 of Chimp.

F. Compiler error on line 7 of Chimp.

11. Which are true of the following code? (Choose all that apply)
1:  public class Rope {

2:    public static void swing() {

3:      System.out.print("swing ");

4:    }

5:    public void climb() {

6:      System.out.println("climb ");

7:    }

8:    public static void play() {

9:      swing();

10:     climb();

11:   }

12:   public static void main(String[] args) {

13:     Rope rope = new Rope();

14:     rope.play();

15:     Rope rope2 = null;

16:     rope2.play();

17:   }

18: }



222 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 222

A. The code compiles as is.

B. There is exactly one compiler error in the code.

C. There are exactly two compiler errors in the code.

D. If the lines with compiler errors are removed, the output is climb climb.

E. If the lines with compiler errors are removed, the output is swing swing.

F. If the lines with compile errors are removed, the code throws a NullPointerException.

12. What is the output of the following code?
import rope.*;

import static rope.Rope.*;

public class RopeSwing {

  private static Rope rope1 = new Rope();

  private static Rope rope2 = new Rope();

  {

    System.out.println(rope1.length);

  }

  public static void main(String[] args) {

    rope1.length = 2;

    rope2.length = 8;

    System.out.println(rope1.length);

  }

}

package rope;

public class Rope {

  public static int length = 0;

}

A. 02

B. 08

C. 2

D. 8

E. The code does not compile.

F. An exception is thrown.

13. How many compiler errors are in the following code?
1: public class RopeSwing {

2:   private static final String leftRope;

3:   private static final String rightRope;

4:   private static final String bench;

5:   private static final String name = "name";



Review Questions 223

c04.indd 1½  4/2014 Page 223

6:   static {

7:     leftRope = "left";

8:     rightRope = "right";

9:   }

10:   static {

11:     name = "name";

12:     rightRope = "right";

13:   }

14:   public static void main(String[] args) {

15:     bench = "bench";

16:   }

17: }

A. 0

B. 1

C. 2

D. 3

E. 4

F. 5

14. Which of the following can replace line 2 to make this code compile? (Choose 
all that apply)
1: import java.util.*;

2: // INSERT CODE HERE

3: public class Imports {

4:  public void method(ArrayList<String> list) {

5:    sort(list);

6:  }

7: }

A. import static java.util.Collections;

B. import static java.util.Collections.*;

C. import static java.util.Collections.sort(ArrayList<String>);

D. static import java.util.Collections;

E. static import java.util.Collections.*;

F. static import java.util.Collections.sort(ArrayList<String>);

15. What is the result of the following statements?
1:  public class Test {

2:    public void print(byte x) {

3:      System.out.print("byte");

4:    }

5:    public void print(int x) {

6:      System.out.print("int");



224 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 224

7:    }

8:    public void print(float x) {

9:      System.out.print("float");

10:   }

11:   public void print(Object x) {

12:     System.out.print("Object");

13:   }

14:   public static void main(String[] args) {

15:     Test t = new Test();

16:     short s = 123;

17:     t.print(s);

18:     t.print(true);

19:     t.print(6.789);

20:   }

21: }

A. bytefloatObject

B. intfloatObject

C. byteObjectfloat

D. intObjectfloat

E. intObjectObject

F. byteObjectObject

16. What is the result of the following program?
1: public class Squares {

2:   public static long square(int x) {

3:     long y = x * (long) x;

4:     x = -1;

5:     return y;

6:   }

7:   public static void main(String[] args) {

8:     int value = 9;

9:     long result = square(value);

10:     System.out.println(value);

11:   } }

A. -1

B. 9

C. 81

D. Compiler error on line 9.

E. Compiler error on a different line.



Review Questions 225

c04.indd 1½  4/2014 Page 225

17. Which of the following are output by the following code? (Choose all that apply)
public class StringBuilders {

  public static StringBuilder work(StringBuilder a, 
StringBuilder b) {

    a = new StringBuilder("a");

    b.append("b");

    return a;

  }

  public static void main(String[] args) {

    StringBuilder s1 = new StringBuilder("s1");

    StringBuilder s2 = new StringBuilder("s2");

    StringBuilder s3 = work(s1, s2);

    System.out.println("s1 = " + s1);

    System.out.println("s2 = " + s2);

    System.out.println("s3 = " + s3);

  }

}

A. s1 = a

B. s1 = s1

C. s2 = s2

D. s2 = s2b

E. s3 = a

F. s3 = null

G. The code does not compile.

18. Which of the following are true? (Choose 2)

A. this() can be called from anywhere in a constructor.

B. this() can be called from any instance method in the class.

C. this.variableName can be called from any instance method in the class.

D. this.variableName can be called from any static method in the class.

E. You must include a default constructor in the code if the compiler does not include one.

F. You can call the default constructor written by the compiler using this().

G. You can access a private constructor with the main() method.

19. Which of these classes compile and use a default constructor? (Choose all that apply)

A. public class Bird { }

B. public class Bird { public bird() {} }

C. public class Bird { public bird(String name) {} }

D. public class Bird { public Bird() {} }



226 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 226

E. public class Bird { Bird(String name) {} }

F. public class Bird { private Bird(int age) {} } 

G. public class Bird { void Bird() { }

20. Which code can be inserted to have the code print 2?
public class BirdSeed {

  private int numberBags;

  boolean call;

  public BirdSeed() {

    // LINE 1

    call = false;

    // LINE 2

  }

  public BirdSeed(int numberBags) {

    this.numberBags = numberBags;

  }

  public static void main(String[] args) {

    BirdSeed seed = new BirdSeed();

    System.out.println(seed.numberBags);

  } }

A. Replace line 1 with BirdSeed(2);

B. Replace line 2 with BirdSeed(2);

C. Replace line 1 with new BirdSeed(2);

D. Replace line 2 with new BirdSeed(2);

E. Replace line 1 with this(2);

F. Replace line 2 with this(2);

21. Which of the following complete the constructor so that this code prints out 50? (Choose 
all that apply)
public class Cheetah { 

  int numSpots;

  public Cheetah(int numSpots) {

    // INSERT CODE HERE

  } 

  public static void main(String[] args) {

    System.out.println(new Cheetah(50).numSpots);

  }

}



Review Questions 227

c04.indd 1½  4/2014 Page 227

A. numSpots = numSpots;

B. numSpots = this.numSpots;

C. this.numSpots = numSpots;

D. numSpots = super.numSpots;

E. super.numSpots = numSpots;

F. None of the above.

22. What is the result of the following?
1:  public class Order {

2:    static String result = "";

3:    { result += "c"; }

4:    static 

5:    { result += "u"; }

6:    { result += "r"; }

7: }

1: public class OrderDriver {

2:   public static void main(String[] args) {

3:     System.out.print(Order.result + " ");

4:     System.out.print(Order.result + " ");

5:     new Order();

6:     new Order();

7:     System.out.print(Order.result + " ");

8:   }

9: }

A. curur

B. ucrcr

C. u ucrcr

D. u u curcur

E. u u ucrcr

F. ur ur urc

G. The code does not compile.

23. What is the result of the following?
1: public class Order {

2:   String value = "t";

3:   { value += "a"; }

4:   { value += "c"; }

5:   public Order() {



228 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 228

6:     value += "b";

7:   }

8:   public Order(String s) {

9:     value += s;

10:  }

11:  public static void main(String[] args) {

12:    Order order = new Order("f");

13:    order = new Order();

14:    System.out.println(order.value);

15:  } }

A. tacb

B. tacf

C. tacbf

D. tacfb

E. tacftacb

F. The code does not compile.

G. An exception is thrown.

24. Which of the following will compile when inserted in the following code? (Choose 
all that apply)
public class Order3 {

  final String value1 = "1";

  static String value2 = "2";

  String value3 = "3";

  {

    // CODE SNIPPET 1

  }

  static {

    // CODE SNIPPET 2

  }

}

A. value1 = "d"; instead of // CODE SNIPPET 1

B. value2 = "e"; instead of // CODE SNIPPET 1

C. value3 = "f"; instead of // CODE SNIPPET 1

D. value1 = "g"; instead of // CODE SNIPPET 2

E. value2 = "h"; instead of // CODE SNIPPET 2

F. value3 = "i"; instead of // CODE SNIPPET 2



Review Questions 229

c04.indd 1½  4/2014 Page 229

25. Which of the following are true about the following code? (Choose all that apply)
public class Create {

  Create() {

    System.out.print("1 ");

  }

  Create(int num) {

    System.out.print("2 ");

  }

  Create(Integer num) {

    System.out.print("3 ");

  }

  Create(Object num) {

    System.out.print("4 ");

  }

  Create(int... nums) {

    System.out.print("5 ");

  }

  public static void main(String[] args) {

    new Create(100);

    new Create(1000L);

  }

}

A. The code prints out 2 4.

B. The code prints out 3 4.

C. The code prints out 4 2.

D. The code prints out 4 4.

E. The code prints 3 4 if you remove the constructor Create(int num).

F. The code prints 4 4 if you remove the constructor Create(int num). 

G. The code prints 5 4 if you remove the constructor Create(int num).

26. What is the result of the following class?
1: import java.util.function.*;

2: 

3: public class Panda {

4:   int age;

5:   public static void main(String[] args) {

6:     Panda p1 = new Panda();

7:     p1.age = 1;

8:     check(p1, p -> p.age < 5);



230 Chapter 4 ■ Methods and Encapsulation

c04.indd 1½  4/2014 Page 230

9:   }

10:   private static void check(Panda panda, Predicate<Panda> pred) {

11:     String result = pred.test(panda) ? "match" : "not match"; 

12:     System.out.print(result);

13: } }

A. match

B. not match

C. Compiler error on line 8.

D. Compiler error on line 10.

E. Compiler error on line 11.

F. A runtime exception is thrown.

27. What is the result of the following code?
1: interface Climb {

2:   boolean isTooHigh(int height, int limit);

3: }

4: 

5: public class Climber {

6:   public static void main(String[] args) {

7:   check((h, l) -> h.append(l).isEmpty(), 5);

8:   }

9:   private static void check(Climb climb, int height) {

10:    if (climb.isTooHigh(height, 10)) 

11:      System.out.println("too high");

12:    else 

13:      System.out.println("ok");

14:  }

15: }

A. ok

B. too high

C. Compiler error on line 7.

D. Compiler error on line 10.

E. Compiler error on a different line.

F. A runtime exception is thrown.

28. Which of the following lambda expressions can fill in the blank? (Choose all that apply)
List<String> list = new ArrayList<>();

list.removeIf(___________________);



Review Questions 231

c04.indd 1½  4/2014 Page 231

A. s -> s.isEmpty()

B. s -> {s.isEmpty()}

C. s -> {s.isEmpty();}

D. s -> {return s.isEmpty();}

E. String s -> s.isEmpty()

F. (String s) -> s.isEmpty()

29. Which lambda can replace the MySecret class to return the same value? (Choose 
all that apply)
interface Secret {

  String magic(double d);

}

class MySecret implements Secret {

  public String magic(double d) {

    return "Poof";

  }

}

A. caller((e) -> "Poof");

B. caller((e) -> {"Poof"});

C. caller((e) -> { String e = ""; "Poof" });

D. caller((e) -> { String e = ""; return "Poof"; });

E. caller((e) -> { String e = ""; return "Poof" });

F. caller((e) -> { String f = ""; return "Poof"; });  





c05.indd 1½  4/2014 Page 233

Chapter 

5
Class Design

OCA EXAM OBJECTIVES COVERED IN THIS 
CHAPTER:

 ✓ Working with Inheritance

 ■ Describe inheritance and its benefits 

 ■ Develop code that demonstrates the use of polymorphism; 

including overriding and object type versus reference type

 ■ Determine when casting is necessary

 ■ Use super and this to access objects and constructors

 ■ Use abstract classes and interfaces



c05.indd 1½  4/2014 Page 234

In Chapter 1, “Java Building Blocks,” we introduced the 
basic defi nition for a class in Java. In Chapter 4, “Methods 
and Encapsulation,” we delved into constructors, methods, 

and modifi ers, and showed how you can use them to build more structured classes. In this 
chapter, we’ll take things one step further and show how class structure is one of the most 
powerful features in the Java language.

At its core, proper Java class design is about code reusability, increased functionality, 
and standardization. For example, by creating a new class that extends an existing class, 
you may gain access to a slew of inherited primitives, objects, and methods. Alternatively, 
by designing a standard interface for your application, you ensure that any class that imple-
ments the interface has certain required methods defi ned. Finally, by creating abstract class 
defi nitions, you’re defi ning a platform that other developers can extend and build on top of. 

Introducing Class Inheritance

When creating a new class in Java, you can defi ne the class to inherit from an existing class. 
Inheritance is the process by which the new child subclass automatically includes any 
public or protected primitives, objects, or methods defi ned in the parent class.

For illustrative purposes, we refer to any class that inherits from another class as a child 
class, or a descendent of that class. Alternatively, we refer to the class that the child inherits 
from as the parent class, or an ancestor of the class. If child X inherits from class Y, which 
in turn inherits from class Z, then X would be considered an indirect child, or descendent, 
of class Z.

Java supports single inheritance, by which a class may inherit from only one direct par-
ent class. Java also supports multiple levels of inheritance, by which one class may extend 
another class, which in turn extends another class. You can extend a class any number of 
times, allowing each descendent to gain access to its ancestor’s members.

To truly understand single inheritance, it may helpful to contrast it with multiple inheri-
tance, by which a class may have multiple direct parents. By design, Java doesn’t support 
multiple inheritance in the language because studies have shown that multiple inheritance 
can lead to complex, often diffi cult-to-maintain code. Java does allow one exception to the 
single inheritance rule: classes may implement multiple interfaces, as you’ll see later in this 
chapter. 

Figure 5.1 illustrates the various types of inheritance models. The items on the left are 
considered single inheritance because each child has exactly one parent. You may notice 
that single inheritance doesn’t preclude parents from having multiple children. The right 



Introducing Class Inheritance 235

c05.indd 1½  4/2014 Page 235

side shows items that have multiple inheritance. For example, a dog object has multiple par-
ent designations. Part of what makes multiple inheritance complicated is determining which 
parent to inherit values from in case of a confl ict. For example, if you have an object or 
method defi ned in all of the parents, which one does the child inherit? There is no natural 
ordering for parents in this example, which is why Java avoids these issues by disallowing 
multiple inheritance altogether.

F I GU R E 5 .1   Types of inheritance

Animal Animal Pet Friendly

Mammal Bird

Bat Tiger Parrot Eagle Husky Poodle

Single Inheritance Multiple Inheritance

Dog

It is possible in Java to prevent a class from being extended by marking the class with 
the final modifi er. If you try to defi ne a class that inherits from a final class, the compiler 
will throw an error and not compile. Unless otherwise specifi ed, throughout this chapter 
you can assume the classes we work with are not marked as final.

Extending a Class
In Java, you can extend a class by adding the parent class name in the defi nition using the 
extends keyword. The syntax of defi ning and extending a class is shown in Figure 5.2.

F I GU R E 5 . 2   Defining and extending a class

public abstract class ElephantSeal extends Seal {

     // Methods and Variables defined here

}

public or default access modifier

abstract or final keyword (optional)

class keyword (required)

class name

extends parent class (optional)

We’ll discuss what it means for a class to be abstract and final, as well as the class 
access modifi ers, later in this chapter.



236 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 236

Because Java allows only one public class per fi le, we can create two fi les, Animal.java 
and Lion.java, in which the Lion class extends the Animal class. Assuming they are in the 
same package, an import statement is not required in Lion.java to access the Animal class.

Here are the contents of Animal.java:

public class Animal {

  private int age;

  public int getAge() {

    return age;

  }

  public void setAge(int age) {

    this.age = age;

  }

}

And here are the contents of Lion.java:

public class Lion extends Animal {

  private void roar() {

    System.out.println("The "+getAge()+" year old lion says: Roar!");

  }

}

Notice the use of the extends keyword in Lion.java to indicate that the Lion class 
extends from the Animal class. In this example, we see that getAge() and setAge() are 
accessible by subclass Lion, because they are marked as public in the parent class. The 
primitive age is marked as private and therefore not accessible from the subclass Lion, as 
the following would not compile:

public class Lion extends Animal {

  private void roar() {

    System.out.println("The "+age+" year old lion says: Roar!");  
    // DOES NOT COMPILE

  }

}

Despite the fact that age is inaccessible by the child class, if we have an instance of a 
Lion object, there is still an age value that exists within the instance. The age value just 
cannot be directly referenced by the child class nor any instance of the class. In this man-
ner, the Lion object is actually “bigger” than the Animal object in the sense that it includes 
all the properties of the Animal object (although not all of those properties may be directly 
accessible) along with its own set of Lion attributes.



Introducing Class Inheritance 237

c05.indd 1½  4/2014 Page 237

Applying Class Access Modifiers
As discussed in Chapter 4, you can apply access modifi ers (public, private, protected, 
default) to both class methods and variables. It probably comes as no surprise that you can 
also apply access modifi ers to class defi nitions, since we have been adding the public access 
modifi er to nearly every class up to now.

For the OCA exam, you should only be familiar with public and default 
package-level class access modifiers, because these are the only ones that 
can be applied to top-level classes within a Java file. The protected and 
private modifiers can only be applied to inner classes, which are classes 
that are defined within other classes, but this is well out of scope for the 
OCA exam.

The public access modifi er applied to a class indicates that it can be referenced and used 
in any class. The default package private modifi er, which is the lack of any access modifi er, 
indicates the class can be accessed only by a subclass or class within the same package.

As you know, a Java fi le can have many classes but at most one public class. In fact, it 
may have no public class at all. One feature of using the default package private modifi er 
is that you can defi ne many classes within the same Java fi le. For example, the following 
defi nition could appear in a single Java fi le named Groundhog.java, since it contains only 
one public class:

class Rodent {}

public class Groundhog extends Rodent {}

If we were to update the Rodent class with the public access modifi er, the Groundhog.java 
fi le would not compile unless the Rodent class was moved to its own Rodent.java fi le.

The rules for applying class access modifi ers are identical for interfaces. There can be at 
most one public class or interface in a Java fi le. Like classes, top-level interfaces can also 
be declared with the public or default modifi ers. We’ll discuss interfaces in detail later in 
this chapter.

For simplicity, any time you see multiple public classes or interfaces 
defined in the same code block in this chapter, assume each class is 
defined in its own Java file.

Creating Java Objects
Throughout our discussion of Java in this book, we have thrown around the word object 
numerous times—and with good reason. In Java, all classes inherit from a single class, 



238 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 238

java.lang.Object. Furthermore, java.lang.Object is the only class that doesn’t have any 
parent classes.

You might be wondering, “None of the classes I’ve written so far extend java.lang
.Object, so how do all classes inherit from it?” The answer is that the compiler has been 
automatically inserting code into any class you write that doesn’t extend a specifi c class. 
For example, consider the following two equivalent class defi nitions:

public class Zoo {

}

public class Zoo extends java.lang.Object {

}

The key is that when Java sees you defi ne a class that doesn’t extend another class, it 
immediately adds the syntax extends java.lang.Object to the class defi nition.

If you defi ne a new class that extends an existing class, Java doesn’t add this syntax, 
although the new class still inherits from java.lang.Object. Since all classes inherit from 
java.lang.Object, extending an existing class means the child automatically inherits from 
java.lang.Object by construction. This means that if you look at the inheritance structure 
of any class, it will always end with java.lang.Object on the top of the tree, as shown in 
Figure 5.3.

F I GU R E 5 . 3   Java object inheritance

Mammal

java.lang.Object

…

Ox

All objects inherit java.lang.Object

Defining Constructors
As you may recall from Chapter 4, every class has at least one constructor. In the case that 
no constructor is declared, the compiler will automatically insert a default no-argument 
constructor. In the case of extending a class, though, things are a bit more interesting.

In Java, the fi rst statement of every constructor is either a call to another constructor 
within the class, using this(), or a call to a constructor in the direct parent class, using 



Introducing Class Inheritance 239

c05.indd 1½  4/2014 Page 239

super(). If a parent constructor takes arguments, the super constructor would also take 
arguments. For simplicity in this section, we refer to the super() command as any par-
ent constructor, even those that take an argument. Notice the user of both super() and 
super(age) in the following example:

public class Animal {

  private int age;

  public Animal(int age) {

    super();

    this.age = age;

  }

}

public class Zebra extends Animal {

  public Zebra(int age) {

    super(age);

  }

  public Zebra() {

    this(4);

  }

}

In the fi rst class, Animal, the fi rst statement of the constructor is a call to the parent 
constructor defi ned in java.lang.Object, which takes no arguments. In the second class, 
Zebra, the fi rst statement of the fi rst constructor is a call to Animal’s constructor, which 
takes a single argument. The class Zebra also includes a second no-argument construc-
tor that doesn’t call super() but instead calls the other constructor within the Zebra class 
using this(4).

Like the this() command that you saw in Chapter 4, the super() command may only 
be used as the fi rst statement of the constructor. For example, the following two class defi -
nitions will not compile:

public class Zoo {

  public Zoo() {

    System.out.println("Zoo created");

    super(); // DOES NOT COMPILE

  }

}

public class Zoo {

  public Zoo() {

    super();

    System.out.println("Zoo created");



240 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 240

    super();  // DOES NOT COMPILE

  }

}

The fi rst class will not compile because the call to the parent constructor must be the 
fi rst statement of the constructor, not the second statement. In the second code snippet, 
super() is the fi rst statement of the constructor, but it also used as the third statement. 
Since super() can only be used as the fi rst statement of the constructor, the code will like-
wise not compile.

If the parent class has more than one constructor, the child class may use any valid 
parent constructor in its defi nition, as shown in the following example:

public class Animal {

  private int age;

  private String name;

  public Animal(int age, String name) {

    super();

    this.age = age;

    this.name = name;

  }

  public Animal(int age) {

    super();

    this.age = age;

    this.name = null;

  }

}

public class Gorilla extends Animal {

  public Gorilla(int age) {

    super(age,"Gorilla");

  }

  public Gorilla() {

    super(5);

  }

}

In this example, the fi rst child constructor takes one argument, age, and calls the par-
ent constructor, which takes two arguments, age and name. The second child constructor 
takes no arguments, and it calls the parent constructor, which takes one argument, age. 
In this example, notice that the child constructors are not required to call matching parent 
constructors. Any valid parent constructor is acceptable as long as the appropriate input 
parameters to the parent constructor are provided.



Introducing Class Inheritance 241

c05.indd 1½  4/2014 Page 241

Understanding Compiler Enhancements
Up to now, we defi ned numerous classes that did not explicitly call the parent construc-
tor via the super() keyword, so why did the code compile? The answer is that the Java 
compiler automatically inserts a call to the no-argument constructor super() if the fi rst 
statement is not a call to the parent constructor. For example, the following three class 
and constructor defi nitions are equivalent, because the compiler will automatically convert 
them all to the last example:

public class Donkey {

}

public class Donkey {

  public Donkey() {

  }

}

public class Donkey {

  public Donkey() {

    super();

    }

}

Make sure you understand the differences between these three Donkey class defi nitions 
and why Java will automatically convert them all to the last defi nition. Keep the process the 
Java compile performs in mind as we discuss the next few examples.

What happens if the parent class doesn’t have a no-argument constructor? Recall that 
the no-argument constructor is not required and only inserted if there is no constructor 
defi ned in the class. In this case, the Java compiler will not help and you must create at least 
one constructor in your child class that explicitly calls a parent constructor via the super() 
command. For example, the following code will not compile:

public class Mammal {

  public Mammal(int age) {

  }

}

public class Elephant extends Mammal {  // DOES NOT COMPILE

}

In this example no constructor is defi ned within the Elephant class, so the compiler tries 
to insert a default no-argument constructor with a super() call, as it did in the Donkey 
example. The compiler stops, though, when it realizes there is no parent constructor that 
takes no arguments. In this example, we must explicitly defi ne at least one constructor, as 
in the following code:



242 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 242

public class Mammal {

  public Mammal(int age) {

  }

}

public class Elephant extends Mammal {

  public Elephant() {  // DOES NOT COMPILE

  }

}

This code still doesn’t compile, though, because the compiler tries to insert the no-
argument super() as the fi rst statement of the constructor in the Elephant class, and there 
is no such constructor in the parent class. We can fi x this, though, by adding a call to a par-
ent constructor that takes a fi xed argument:

public class Mammal {

  public Mammal(int age) {

  }

}

public class Elephant extends Mammal {

  public Elephant() {

    super(10);

  }

}

This code will compile because we have added a constructor with an explicit call to a 
parent constructor. Note that the class Elephant now has a no-argument constructor even 
though its parent class Mammal doesn’t. Subclasses may defi ne no-argument constructors 
even if their parent classes do not, provided the constructor of the child maps to a parent 
constructor via an explicit call of the super() command.

You should be wary of any exam question in which the parent class defi nes a constructor 
that takes arguments and doesn’t defi ne a no-argument constructor. Be sure to check that 
the code compiles before answering a question about it.

Reviewing Constructor Rules
Let’s review the rules we covered in this section. 

Constructor Defi nition Rules:

1. The first statement of every constructor is a call to another constructor within the class 
using this(), or a call to a constructor in the direct parent class using super().

2. The super() call may not be used after the first statement of the constructor.



Introducing Class Inheritance 243

c05.indd 1½  4/2014 Page 243

3. If no super() call is declared in a constructor, Java will insert a no-argument super() 
as the first statement of the constructor.

4. If the parent doesn’t have a no-argument constructor and the child doesn’t define any 
constructors, the compiler will throw an error and try to insert a default no-argument 
constructor into the child class.

5. If the parent doesn’t have a no-argument constructor, the compiler requires an explicit 
call to a parent constructor in each child constructor.

Make sure you understand these rules; the exam will often provide code that breaks one 
or many of these rules and therefore doesn’t compile.

Calling Constructors
Now that we have covered how to defi ne a valid constructor, we’ll show you how Java calls 
the constructors. In Java, the parent constructor is always executed before the child con-
structor. For example, try to determine what the following code outputs:

class Primate {

  public Primate() {

    System.out.println("Primate");

  }

}

class Ape extends Primate {

  public Ape() {

    System.out.println("Ape");

  }

}

public class Chimpanzee extends Ape {

  public static void main(String[] args) {

    new Chimpanzee();

  }

}

The compiler fi rst inserts the super() command as the fi rst statement of both the 
Primate and Ape constructors. Next, the compiler inserts a default no-argument construc-
tor in the Chimpanzee class with super() as the fi rst statement of the constructor. The code 
will execute with the parent constructors called fi rst and yields the following output:

Primate

Ape



244 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 244

The exam creators are fond of questions similar to the previous one that try to get 
you to determine the output of statements involving constructors. Just remember to 
“think like the compiler” as much as possible and insert the missing constructors or 
statements as needed.

Calling Inherited Class Members
Java classes may use any public or protected member of the parent class, including meth-
ods, primitives, or object references. If the parent class and child class are part of the same 
package, the child class may also use any default members defi ned in the parent class. 
Finally, a child class may never access a private member of the parent class, at least not 
through any direct reference. As you saw in the fi rst example in this chapter, a private 
member age may be accessed indirectly via a public or protected method.

To reference a member in a parent class, you can just call it directly, as in the following 
example with the output function displaySharkDetails():

class Fish {

  protected int size;

  private int age;

  

  public Fish(int age) {

    this.age = age;

  }

  

  public int getAge() {

    return age;

  }

}

public class Shark extends Fish {

  private int numberOfFins = 8;

        

  public Shark(int age) {

    super(age);

    this.size = 4; 

  }

        

  public void displaySharkDetails() {

    System.out.print("Shark with age: "+getAge());



Introducing Class Inheritance 245

c05.indd 1½  4/2014 Page 245

    System.out.print(" and "+size+" meters long");

    System.out.print(" with "+numberOfFins+" fins");

  }

}

In the child class, we use the public method getAge() and protected member size to 
access values in the parent class.

As you may remember from Chapter 4, you can use the keyword this to access a mem-
ber of the class. You may also use this to access members of the parent class that are acces-
sible from the child class, since a child class inherits all of its parent members. Consider 
the following alternative defi nition to the displaySharkDetails() method in the previous 
example:

public void displaySharkDetails() {

  System.out.print("Shark with age: "+this.getAge());

  System.out.print(" and "+this.size+" meters long");

  System.out.print(" with "+this.numberOfFins+" fins");

}

In Java, you can explicitly reference a member of the parent class by using the super key-
word, as in the following alternative defi nition of displaySharkDetails():

public void displaySharkDetails() {

  System.out.print("Shark with age: "+super.getAge());

  System.out.print(" and "+super.size+" meters long");

  System.out.print(" with "+this.numberOfFins+" fins");

}

In the previous example, we could use this or super to access a member of the parent 
class, but is the same true for a member of the child class? Consider this example:

public void displaySharkDetails() {

  System.out.print("Shark with age: "+super.getAge());

  System.out.print(" and "+super.size+" meters long");

  System.out.print(" with "+super.numberOfFins+" fins"); // DOES NOT COMPILE

}

This code will not compile because numberOfFins is only a member of the current class, 
not the parent class. In other words, we see that this and super may both be used for 
methods or variables defi ned in the parent class, but only this may be used for members 
defi ned in the current class.

As you’ll see in the next section, if the child class overrides a member of the parent class, 
this and super could have very different effects when applied to a class member.



246 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 246

super() vs. super

As discussed in Chapter 4, this() and this are unrelated in Java. Likewise, super() and 

super are quite different but may be used in the same methods on the exam. The fi rst, 

super(), is a statement that explicitly calls a parent constructor and may only be used in 

the fi rst line of a constructor of a child class. The second, super, is a keyword used to ref-

erence a member defi ned in a parent class and may be used throughout the child class.

The exam may try to trick you by using both super() and super in a constructor. For 

example, consider the following code:

public Rabbit(int age) {

  super();

  super.setAge(10);

}

The fi rst statement of the constructor calls the parent’s constructor, whereas the second 

statement calls a function defi ned in the parent class. Contrast this with the following 

code, which doesn’t compile:

public Rabbit(int age) {

  super;  // DOES NOT COMPILE

  super().setAge(10);  // DOES NOT COMPILE

}

This code looks similar to the previous example, but neither line of the constructor will 

compile since they are using the keywords incorrectly. When you see super() or super 

on the exam, be sure to check that they are being used correctly.

Inheriting Methods
Inheriting a class grants us access to the public and protected members of the parent 
class, but also sets the stage for collisions between methods defi ned in both the parent class 
and the subclass. In this section, we’ll review the rules for method inheritance and how 
Java handles such scenarios.

Overriding a Method
What if there is a method defi ned in both the parent and child class? For example, you may 
want to defi ne a new version of an existing method in a child class that makes use of the 
defi nition in the parent class. In this case, you can override a method a method by declar-
ing a new method with the signature and return type as the method in the parent class. As 
you may recall from Chapter 4, the method signature includes the name and list of input 
parameters.



Introducing Class Inheritance 247

c05.indd 1½  4/2014 Page 247

When you override a method, you may reference the parent version of the method 
using the super keyword. In this manner, the keywords this and super allow you to select 
between the current and parent version of a method, respectively. We illustrate this with the 
following example:

public class Canine {

  public double getAverageWeight() {

    return 50;

  }

}

public class Wolf extends Canine {

  public double getAverageWeight() {

    return super.getAverageWeight()+20;

  }

  public static void main(String[] args) {

    System.out.println(new Canine().getAverageWeight());

    System.out.println(new Wolf().getAverageWeight());

  }

}

In this example, in which the child class Wolf overrides the parent class Canine, the 
method getAverageWeight() runs without issue and outputs the following:

50.00

70.00

You might be wondering, was the use of super in the child’s method required? For 
example, what would the following code output if we removed the super keyword in the 
getAverageWeight() method of the Wolf class?

public double getAverageWeight() {

  return getAverageWeight()+20;  // INFINITE LOOP

}

In this example, the compiler would not call the parent Canine method; it would call the 
current Wolf method since it would think you were executing a recursive call. A recursive 
function is one that calls itself as part of execution, and it is common in programming. A 
recursive function must have a termination condition. In this example, there is no termina-
tion condition; therefore, the application will attempt to call itself infi nitely and produce a 
stack overfl ow error at runtime.

Overriding a method is not without limitations, though. The compiler performs the fol-
lowing checks when you override a nonprivate method:

1. The method in the child class must have the same signature as the method in the parent 
class.



248 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 248

2. The method in the child class must be at least as accessible or more accessible than the 
method in the parent class.

3. The method in the child class may not throw a checked exception that is new or 
broader than the class of any exception thrown in the parent class method.

4. If the method returns a value, it must be the same or a subclass of the method in the 
parent class, known as covariant return types.

The fi rst rule of overriding a method is somewhat self-explanatory. If two methods have 
the same name but different signatures, the methods are overloaded, not overridden. As you 
may recall from our discussion of overloaded methods in Chapter 4, the methods are unre-
lated to each other and do not share any properties.

Overloading vs. Overriding

Overloading a method and overriding a method are similar in that they both involve 

redefi ning a method using the same name. They differ in that an overloaded method will 

use a different signature than an overridden method. This distinction allows overloaded 

methods a great deal more freedom in syntax than an overridden method would have. 

For example, take a look at the following code sample:

public class Bird {

  public void fly() {

    System.out.println("Bird is flying");

  }

  public void eat(int food) {

    System.out.println("Bird is eating "+food+" units of food");

  }

}

public class Eagle extends Bird {

  public int fly(int height) {

    System.out.println("Bird is flying at "+height+" meters");

    return height;

  }

  public int eat(int food) { // DOES NOT COMPILE

    System.out.println("Bird is eating "+food+" units of food");

    return food;

  }

}



Introducing Class Inheritance 249

c05.indd 1½  4/2014 Page 249

The fi rst method, fly(), is overloaded in the subclass Eagle, since the signature changes 

from a no-argument constructor to a constructor with one int argument. Because the 

method is being overloaded and not overridden, the return type can be changed from 

void to int without issue.

The second method, eat(), is overridden in the subclass Eagle, since the signature is the 

same as it is in the parent class Bird—they both take a single argument int. Because the 

method is being overridden, the return type of the method in Eagle must be a subclass of 

the return type of the method in Bird. In this example, the return type void is not a sub-

class of int; therefore, the compiler will throw an exception on this method defi nition.

Any time you see a method on the exam with the same name as a method in the parent 

class, determine whether the method is being overloaded or overridden fi rst; doing so 

will help you with questions about whether the code will compile.

Let’s review some examples of the last three rules of overriding methods so you can 
learn to spot the issues when they arise:

public class Camel {

  protected String getNumberOfHumps() {

    return "Undefined";

  }

}

public class BactrianCamel extends Camel {

  private int getNumberOfHumps() {  // DOES NOT COMPILE

    return 2;

  }

}

In this example, the method in the child class doesn’t compile for two reasons. First, it 
violates the second rule of overriding methods: the child method must be at least as acces-
sible as the parent. In the example, the parent method uses the protected modifi er, but the 
child method uses the private modifi er, making it less accessible in the child method than 
in the parent method. It also violates the fourth rule of overriding methods: the return 
type of the parent method and child method must be covariant. In this example, the 
return type of the parent method is String, whereas the return type of the child method 
is int, neither of which is covariant with each other.

Any time you see a method that appears to be overridden on the example, fi rst check to 
make sure it is truly being overridden and not overloaded. Once you have confi rmed it is 
being overridden, check that the access modifi ers, return types, and any exceptions defi ned 
in the method are compatible with one another. Let’s take a look at some example methods 
that use exceptions:



250 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 250

public class InsufficientDataException extends Exception {}

public class Reptile {

  protected boolean hasLegs() throws InsufficientDataException {

    throw new InsufficientDataException();

  }

  protected double getWeight() throws Exception {

    return 2;

  }

}

public class Snake extends Reptile {

  protected boolean hasLegs() {

    return false;

  }

  protected double getWeight() throws InsufficientDataException{

    return 2;

  }

}

In this example, both parent and child classes defi ne two methods, hasLegs() and 
getWeight(). The fi rst method, hasLegs(), throws an exception InsufficientDataException 
in the parent class but doesn’t throw an exception in the child class. This does not violate the 
third rule of overriding methods, though, as no new exception is defi ned. In other words, a 
child method may hide or eliminate a parent method’s exception without issue.

The second method, getWeight(), throws Exception in the parent class 
and InsufficientDataException in the child class. This is also permitted, as 
InsufficientDataException is a subclass of Exception by construction.

Neither of the methods in the previous example violates the third rule of overriding 
methods, so the code compiles and runs without issue. Let’s review some examples that do 
violate the third rule of overriding methods:

public class InsufficientDataException extends Exception {}

public class Reptile {

  protected double getHeight() throws InsufficientDataException {

    return 2;

  }

  protected int getLength() {

    return 10;

  }

}



Introducing Class Inheritance 251

c05.indd 1½  4/2014 Page 251

public class Snake extends Reptile {

  protected double getHeight() throws Exception {  // DOES NOT COMPILE

    return 2;

  }

  protected int getLength() throws InsufficientDataException { // DOES NOT COMPILE

    return 10;

  }

}

Unlike the earlier example, neither of the methods in the child class of this code will com-
pile. The getHeight() method in the parent class throws an InsufficientDataException, 
whereas the method in the child class throws an Exception. Since Exception is not 
a subclass of InsufficientDataException, the third rule of overriding methods is 
violated and the code will not compile. Coincidentally, Exception is a superclass of 
InsufficientDataException.

Next, the getLength() method doesn’t throw an exception in the parent class, but it 
does throw an exception, InsufficientDataException, in the child class. In this manner, 
the child class defi nes a new exception that the parent class did not, which is a violation of 
the third rule of overriding methods.

The last three rules of overriding a method may seem arbitrary or confusing at fi rst, but 
as you’ll see later in this chapter when we discuss polymorphism, they are needed for con-
sistency of the language. Without these rules in place, it is possible to create contradictions 
within the Java language.

Redeclaring private Methods
The previous section defi ned the behavior if you override a public or protected method in 
the class. Now let’s expand our discussion to private methods. In Java, it is not possible to 
override a private method in a parent class since the parent method is not accessible from 
the child class. Just because a child class doesn’t have access to the parent method, doesn’t 
mean the child class can’t defi ne its own version of the method. It just means, strictly speak-
ing, that the new method is not an overridden version of the parent class’s method.

Java permits you to redeclare a new method in the child class with the same or modi-
fi ed signature as the method in the parent class. This method in the child class is a separate 
and independent method, unrelated to the parent version’s method, so none of the rules for 
overriding methods are invoked. For example, let’s return to the Camel example we used in 
the previous section and show two related classes that defi ne the same method:

public class Camel {

  private String getNumberOfHumps() {

    return "Undefined";

  }

}



252 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 252

public class BactrianCamel extends Camel {

  private int getNumberOfHumps() {

    return 2;

  }

}

This code compiles without issue. Notice that the return type differs in the child method 
from String to int. In this example, the method getNumberOfHumps() in the parent class 
is hidden, so the method in the child class is a new method and not an override of the 
method in the parent class. As you saw in the previous section, if the method in the parent 
class were public or protected, the method in the child class would not compile because it 
would violate two rules of overriding methods. The parent method in this example is 
private, so there are no such issues.

Hiding Static Methods
A hidden method occurs when a child class defi nes a static method with the same name 
and signature as a static method defi ned in a parent class. Method hiding is similar but 
not exactly the same as method overriding. First, the four previous rules for overriding a 
method must be followed when a method is hidden. In addition, a new rule is added for 
hiding a method, namely that the usage of the static keyword must be the same between 
parent and child classes. The following list summarizes the fi ve rules for hiding a method:

1. The method in the child class must have the same signature as the method in the parent 
class.

2. The method in the child class must be at least as accessible or more accessible than the 
method in the parent class.

3. The method in the child class may not throw a checked exception that is new or 
broader than the class of any exception thrown in the parent class method.

4. If the method returns a value, it must be the same or a subclass of the method in the 
parent class, known as covariant return types.

5. The method defined in the child class must be marked as static if it is marked as 
static in the parent class (method hiding). Likewise, the method must not be marked 
as static in the child class if it is not marked as static in the parent class (method 
overriding).

Note that the fi rst four are the same as the rules for overriding a method.
Let’s review some examples of the new rule:

public class Bear {

  public static void eat() {

    System.out.println("Bear is eating");

  }

}



Introducing Class Inheritance 253

c05.indd 1½  4/2014 Page 253

public class Panda extends Bear {

  public static void eat() {

    System.out.println("Panda bear is chewing");

  }

  public static void main(String[] args) {

    Panda.eat();

  }

}

In this example, the code compiles and runs without issue. The eat() method in the 
child class hides the eat() method in the parent class. Because they are both marked as 
static, this is not considered an overridden method. Let’s contrast this with examples that 
violate the fi fth rule:

public class Bear {

  public static void sneeze() {

    System.out.println("Bear is sneezing");

  }

  public void hibernate() {

    System.out.println("Bear is hibernating");

  }

}

public class Panda extends Bear {

  public void sneeze() {  // DOES NOT COMPILE

    System.out.println("Panda bear sneezes quietly");

  }

  public static void hibernate() {  // DOES NOT COMPILE

    System.out.println("Panda bear is going to sleep");

  }

}

In this example, sneeze() is marked as static in the parent class but not in the child 
class. The compiler detects that you’re trying to override a method that should be hidden 
and generates a compiler error. In the second method, hibernate() is an instance mem-
ber in the parent class but a static method in the child class. In this scenario, the compiler 
thinks that you’re trying to hide a method that should be overridden and also generates a 
compiler error.



254 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 254

As you saw in the previous example, hiding static methods is fraught 
with pitfalls and potential problems and as a practice should be avoided. 
Though you might see questions on the exam that contain hidden static 
methods that are syntactically correct, avoid hiding static methods in your 
own work, since it tends to lead to confusing and difficult-to-read code. 
You should not reuse the name of a static method in your class if it is 
already used in the parent class.

Overriding vs. Hiding Methods
In our description of hiding of static methods, we indicated there was a distinction between 
overriding and hiding methods. Unlike overriding a method, in which a child method 
replaces the parent method in calls defi ned in both the parent and child, hidden methods 
only replace parent methods in the calls defi ned in the child class.

At runtime the child version of an overridden method is always executed for an instance 
regardless of whether the method call is defi ned in a parent or child class method. In this 
manner, the parent method is never used unless an explicit call to the parent method is 
referenced, using the syntax ParentClassName.method(). Alternatively, at runtime the par-
ent version of a hidden method is always executed if the call to the method is defi ned in the 
parent class. Let’s take a look at an example:

public class Marsupial {

  public static boolean isBiped() {

    return false;

  }

  public void getMarsupialDescription() {

    System.out.println("Marsupial walks on two legs: "+isBiped());

  }

}

public class Kangaroo extends Marsupial {

  public static boolean isBiped() {

    return true;

  }

  public void getKangarooDescription() {

    System.out.println("Kangaroo hops on two legs: "+isBiped());

  }

  public static void main(String[] args) {

    Kangaroo joey = new Kangaroo();

    joey.getMarsupialDescription();

    joey.getKangarooDescription();

  }

}



Introducing Class Inheritance 255

c05.indd 1½  4/2014 Page 255

In this example, the code compiles and runs without issue, outputting the following:

Marsupial walks on two legs: false

Kangaroo hops on two legs: true

Notice that isBiped() returns false in the parent class and true in the child class. 
In the fi rst method call, the parent method getMarsupialDescription() is used. The 
Marsupial class only knows about isBiped() from its own class defi nition, so it outputs 
false. In the second method call, the child executes a method of isBiped(), which hides 
the parent method’s version and returns true.

Contrast this fi rst example with the following example, which uses an overridden ver-
sion of isBiped() instead of a hidden version:

class Marsupial {

  public boolean isBiped() {

    return false;

  }

  public void getMarsupialDescription() {

    System.out.println("Marsupial walks on two legs: "+isBiped());

  }

}

public class Kangaroo extends Marsupial {

  public boolean isBiped() {

    return true;

  }

  public void getKangarooDescription() {

    System.out.println("Kangaroo hops on two legs: "+isBiped());

  }

  public static void main(String[] args) {

    Kangaroo joey = new Kangaroo();

    joey.getMarsupialDescription();

    joey.getKangarooDescription();

  }

}

This code also compiles and runs without issue, but it outputs slightly different text:

Marsupial walks on two legs: true

Kangaroo hops on two legs: true

In this example, the isBiped() method is overridden, not hidden, in the child class. 
Therefore, it is replaced at runtime in the parent class with the call to the child class’s method.

Make sure you understand these examples as they show how hidden and overridden 
methods are fundamentally different. This example makes uses of polymorphism, which 
we’ll discuss later in this chapter.



256 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 256

Creating final methods
We conclude our discussion of method inheritance with a somewhat self-explanatory 
rule: final methods cannot be overridden. If you recall our discussion of modifi ers from 
Chapter 4, you can create a method with the final keyword. By doing so, though, you for-
bid a child class from overriding this method. This rule is in place both when you override 
a method and when you hide a method. In other words, you cannot hide a static method in 
a parent class if it is marked as final.

Let’s take a look at an example:

public class Bird {

  public final boolean hasFeathers() {

    return true;

  }

}

public class Penguin extends Bird {

  public final boolean hasFeathers() { // DOES NOT COMPILE

    return false;

  }

}

In this example, the method hasFeathers() is marked as final in the parent class Bird, 
so the child class Penguin cannot override the parent method, resulting in a compiler error. 
Note that whether or not the child method used the final keyword is irrelevant—the code 
will not compile either way.

Why Mark a Method as fi nal?

Although marking methods as final prevents them from being overridden, it does have 

advantages in practice. For example, you’d mark a method as final when you’re defi n-

ing a parent class and want to guarantee certain behavior of a method in the parent class, 

regardless of which child is invoking the method.

For example, in the previous example with Birds, the author of the parent class may want 

to ensure the method hasFeathers() always returns true, regardless of the child class 

instance on which it is invoked. The author is confi dent that there is no example of a Bird in 

which feathers are not present.

The reason methods are not commonly marked as final in practice, though, is that it 

may be diffi cult for the author of a parent class method to consider all of the possible 

ways her child class may be used. For example, although all adult birds have feathers, a 

baby chick doesn’t; therefore, if you have an instance of a Bird that is a chick, it would 

not have feathers. In short, the final modifi er is only used on methods when the author 

of the parent method wants to guarantee very precise behavior.



Introducing Class Inheritance 257

c05.indd 1½  4/2014 Page 257

Inheriting Variables
As you saw with method overriding, there were a lot of rules when two methods have the 
same signature and are defi ned in both the parent and child classes. Luckily, the rules for 
variables with the same name in the parent and child classes are a lot simpler, because Java 
doesn’t allow variables to be overridden but instead hidden.

Hiding Variables
When you hide a variable, you defi ne a variable with the same name as a variable in a par-
ent class. This creates two copies of the variable within an instance of the child class: one 
instance defi ned for the parent reference and another defi ned for the child reference.

As when hiding a static method, you can’t override a variable; you can only hide it. Also 
similar to hiding a static method, the rules for accessing the parent and child variables are 
quite similar. If you’re referencing the variable from within the parent class, the variable 
defi ned in the parent class is used. Alternatively, if you’re referencing the variable from 
within a child class, the variable defi ned in the child class is used. Likewise, you can refer-
ence the parent value of the variable with an explicit use of the super keyword. Consider 
the following example:

public class Rodent {

  protected int tailLength = 4;

  public void getRodentDetails() {

    System.out.println("[parentTail="+tailLength+"]");

  }

}

public class Mouse extends Rodent {

  protected int tailLength = 8;

  public void getMouseDetails() {

    System.out.println("[tail="+tailLength +",parentTail="+super.tailLength+"]");

  }

  public static void main(String[] args) {

    Mouse mouse = new Mouse();

    mouse.getRodentDetails();

    mouse.getMouseDetails();

  }

}

This code compiles without issue and outputs the following when executed:

[parentTail=4]

[tail=8,parentTail=4]



258 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 258

Notice that the instance of Mouse contains two copies of the tailLength variables: one 
defi ned in the parent and one defi ned in the child. These instances are kept separate from 
each other, allowing our instance of Mouse to reference both tailLength values indepen-
dently. In the fi rst method call, getRodentDetails(), the parent method outputs the parent 
value of the tailLength variable. In the second method call, getMouseDetails(), the child 
method outputs both the child and parent version of the tailLength variables, using the 
super keyword to access the parent variable’s value.

The important thing to remember is that there is no notion of overriding a member vari-
able. For example, there is no code change that could be made to cause Java to override the 
value of tailLength, making it the same in both parent and child. These rules are the same 
regardless of whether the variable is an instance variable or a static variable.

Don’t Hide Variables in Practice

Although Java allows you to hide a variable defi ned in a parent class with one defi ned in 

a child class, it is considered an extremely poor coding practice. For example, take a look 

at the following code, which uses a hidden variable length, marked as public in both 

parent and child classes.

public class Animal {

  public int length = 2;

}

public class Jellyfish extends Animal {

  public int length = 5;

  public static void main(String[] args) {

    Jellyfish jellyfish = new Jellyfish();

    Animal animal = new Jellyfish();

    System.out.println(jellyfish.length);

    System.out.println(animal.length);

  }

}

This code compiles without issue. Here’s the output:

5

2



Creating Abstract Classes 259

c05.indd 1½  4/2014 Page 259

Notice the same type of object was created twice, but the reference to the object deter-

mines which value is seen as output. If the object Jellyfish was passed to a method by 

an Animal reference, as you’ll see in the section “Understanding Polymorphism,” later in 

this chapter, the wrong value might be used.

Hiding variables makes the code very confusing and diffi cult to read, especially if you 

start modifying the value of the variable in both the parent and child methods, since it 

may not be clear which variable you’re updating.

When defi ning a new variable in a child class, it is considered good coding practice to 

select a name for the variable that is not already a public, protected, or default variable 

in use in a parent class. Hiding private variables is considered less problematic because 

the child class did not have access to the variable in the parent class to begin with.

Creating Abstract Classes

Let’s say you want to defi ne a parent class that other developers are going to subclass. Your 
goal is to provide some reusable variables and methods to developers in the parent class, 
whereas the developers provide specifi c implementations or overrides of other methods in 
the child classes. Furthermore, let’s say you also don’t want an instance of the parent class 
to be instantiated unless it is an instance of the child class.

For example, you might defi ne an Animal parent class that a number of classes extend 
from and use but for which an instance of Animal itself cannot be instantiated. All sub-
classes of the Animal class, such as Swan, are required to implement a getName() method, 
but there is no implementation for the method in the parent Animal class. How do you 
ensure all classes that extend Animal provide an implementation for this method?

In Java, you can accomplish this task by using an abstract class and abstract method. An 
abstract class is a class that is marked with the abstract keyword and cannot be instanti-
ated. An abstract method is a method marked with the abstract keyword defi ned in an 
abstract class, for which no implementation is provided in the class in which it is declared.

The following code is based on our Animal and Swan description:

public abstract class Animal {

  protected int age;

  public void eat() { 

    System.out.println("Animal is eating");

  }

  public abstract String getName();

}



260 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 260

public class Swan extends Animal {

  public String getName() {

    return "Swan";

  }

}

The fi rst thing to notice about this sample code is that the Animal class is declared 
abstract and Swan is not. Next, the member age and the method eat() are marked as 
protected and public, respectively; therefore, they are inherited in subclasses such as Swan. 
Finally, the abstract method getName() is terminated with a semicolon and doesn’t provide 
a body in the parent class Animal. This method is implemented with the same name and 
signature as the parent method in the Swan class.

Defining an Abstract Class
The previous sample code illustrates a number of important rules about abstract classes. 
For example, an abstract class may include nonabstract methods and variables, as you saw 
with the variable age and the method eat(). In fact, an abstract class is not required to 
include any abstract methods. For example, the following code compiles without issue even 
though it doesn’t defi ne any abstract methods:

public abstract class Cow {

}

Although an abstract class doesn’t have to implement any abstract methods, an abstract 
method may only be defi ned in an abstract class. For example, the following code won’t 
compile because an abstract method is not defi ned within an abstract class:

public class Chicken {

  public abstract void peck();  // DOES NOT COMPILE

}

The exam creators are fond of questions like this one, which mixes nonabstract classes 
with abstract methods. They are also fond of questions with methods marked as abstract 
for which an implementation is also defi ned. For example, neither method in the following 
code will compile because the methods are marked as abstract:

public abstract class Turtle {

  public abstract void swim() {}  // DOES NOT COMPILE

  public abstract int getAge() {  // DOES NOT COMPILE

    return 10;

  }

}



Creating Abstract Classes 261

c05.indd 1½  4/2014 Page 261

The fi rst method, swim(), doesn’t compile because two brackets are provided instead of 
a semicolon, and Java interprets this as providing a body to an abstract method. The second 
method, getAge(), doesn’t compile because it also provides a body to an abstract method. 
Pay close attention to swim(), because you’ll likely see a question like this on the exam.

Default Method Implementations in Abstract Classes

Although you can’t provide a default implementation to an abstract method in an abstract 

class, you can still defi ne a method with a body—you just can’t mark it as abstract. As 

long as you do not mark it as final, the subclass still has the option to override it, as 

explained in the previous section.

Next, we note that an abstract class cannot be marked as final for a somewhat obvi-
ous reason. By defi nition, an abstract class is one that must be extended by another class to 
be instantiated, whereas a final class can’t be extended by another class. By marking an 
abstract class as final, you’re saying the class can never be instantiated, so the compiler 
refuses to process the code. For example, the following code snippet will not compile:

public final abstract class Tortoise {  // DOES NOT COMPILE

}

Likewise, an abstract method may not be marked as final for the same reason that 
an abstract class may not be marked as final. Once marked as final, the method can 
never be overridden in a subclass, making it impossible to create a concrete instance of the 
abstract class.

public abstract class Goat {

  public abstract final void chew();  // DOES NOT COMPILE

}

Finally, a method may not be marked as both abstract and private. This rule makes 
sense if you think about it. How would you defi ne a subclass that implements a required 
method if the method is not accessible by the subclass itself? The answer is you can’t, which 
is why the compiler will complain if you try to do the following:

public abstract class Whale {

  private abstract void sing();  // DOES NOT COMPILE

}

public class HumpbackWhale extends Whale {

  private void sing() {

    System.out.println("Humpback whale is singing");

  }

}



262 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 262

In this example, the abstract method sing() defi ned in the parent class Whale is not vis-
ible to the subclass HumpbackWhale. Even though HumpbackWhale does provide an implemen-
tation, it is not considered an override of the abstract method since the abstract method is 
unreachable. The compiler recognizes this in the parent class and throws an exception as 
soon as private and abstract are applied to the same method.

If we changed the access modifi ed from private to protected in the parent class Whale, 
would the code compile? Let’s take a look:

public abstract class Whale {

  protected abstract void sing();

}

public class HumpbackWhale extends Whale {

  private void sing() {  // DOES NOT COMPILE

    System.out.println("Humpback whale is singing");

  }

}

In this modifi ed example, the code will still not compile but for a completely differ-
ent reason. If you remember the rules earlier in this chapter for overriding a method, the 
subclass cannot reduce the visibility of the parent method, sing(). Because the method is 
declared protected in the parent class, it must be marked as protected or public in the 
child class. Even with abstract methods, the rules for overriding methods must be followed.

Creating a Concrete Class
When working with abstract classes, it is important to remember that by themselves, they 
cannot be instantiated and therefore do not do much other than defi ne static variables and 
methods. For example, the following code will not compile as it is an attempt to instantiate 
an abstract class.

public abstract class Eel {

  public static void main(String[] args) {

    final Eel eel = new Eel();  // DOES NOT COMPILE

  }

}

An abstract class becomes useful when it is extended by a concrete subclass. A concrete 
class is the fi rst nonabstract subclass that extends an abstract class and is required to imple-
ment all inherited abstract methods. When you see a concrete class extending an abstract 
class on the exam, check that it implements all of the required abstract methods. Let’s 
review this with the following example.

public abstract class Animal {

  public abstract String getName();

}



Creating Abstract Classes 263

c05.indd 1½  4/2014 Page 263

public class Walrus extends Animal { // DOES NOT COMPILE

}

First, note that Animal is marked as abstract and Walrus is not. In this example, Walrus 
is considered the fi rst concrete subclass of Animal. Second, since Walrus is the fi rst concrete 
subclass, it must implement all inherited abstract methods, getName() in this example. 
Because it doesn’t, the compiler rejects the code.

Notice that when we defi ne a concrete class as the “fi rst” nonabstract subclass, we 
include the possibility that another nonabstract class may extend an existing nonabstract 
class. The key point is that the fi rst class to extend the nonabstract class must implement all 
inherited abstract methods. For example, the following variation will also not compile:

public abstract class Animal {

  public abstract String getName();

}

public class Bird extends Animal { // DOES NOT COMPILE

}

public class Flamingo extends Bird {

  public String getName() {

    return "Flamingo";

  }

}

Even though a second subclass Flamingo implements the abstract method getName(), the 
fi rst concrete subclass Bird doesn’t; therefore, the Bird class will not compile.

Extending an Abstract Class
Let’s expand our discussion of abstract classes by introducing the concept of extending an 
abstract class with another abstract. We’ll repeat our previous Walrus example with one 
minor variation:

public abstract class Animal {

  public abstract String getName();

}

public class Walrus extends Animal { // DOES NOT COMPILE

}

public abstract class Eagle extends Animal {

}



264 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 264

In this example, we again have an abstract class Animal with a concrete subclass Walrus 
that doesn’t compile since it doesn’t implement a getName() method. We also have an 
abstract class Eagle, which like Walrus extends Animal and doesn’t provide an implementa-
tion for getName(). In this situation, Eagle does compile because it is marked as abstract. 
Be sure you understand why Walrus doesn’t compile and Eagle does in this example.

As you saw in this example, abstract classes can extend other abstract classes and are 
not required to provide implementations for any of the abstract methods. It follows, then, 
that a concrete class that extends an abstract class must implement all inherited abstract 
methods. For example, the following concrete class Lion must implement two methods, 
getName() and roar():

public abstract class Animal {

  public abstract String getName();

}

public abstract class BigCat extends Animal {

  public abstract void roar();

}

public class Lion extends BigCat {

  public String getName() {

    return "Lion";

  }

  public void roar() {

    System.out.println("The Lion lets out a loud ROAR!");

  }

}

In this sample code, BigCat extends Animal but is marked as abstract; therefore, it is 
not required to provide an implementation for the getName() method. The class Lion is 
not marked as abstract, and as the fi rst concrete subclass, it must implement all inherited 
abstract methods not defi ned in a parent class.

There is one exception to the rule for abstract methods and concrete classes: a concrete 
subclass is not required to provide an implementation for an abstract method if an interme-
diate abstract class provides the implementation. For example, take a look at the following 
variation on our previous example:

public abstract class Animal {

  public abstract String getName();

}

public abstract class BigCat extends Animal {

  public String getName() {



Creating Abstract Classes 265

c05.indd 1½  4/2014 Page 265

    return "BigCat";

  }

  public abstract void roar();

}

public class Lion extends BigCat {

  public void roar() {

    System.out.println("The Lion lets out a loud ROAR!");

  }

}

In this example, BigCat provides an implementation for the abstract method getName() 
defi ned in the abstract Animal class. Therefore, Lion inherits only one abstract method, 
roar(), and is not required to provide an implementation for the method getName(). 

Here’s one way to think about this: if an intermediate class provides an implementation 
for an abstract method, that method is inherited by subclasses as a concrete method, not 
as an abstract one. In other words, the subclasses do not consider it an inherited abstract 
method because it is no longer abstract by the time it reaches the subclasses.

The following are lists of rules for abstract classes and abstract methods that we have 
covered in this section. Review and understand these rules before taking the exam.

Abstract Class Defi nition Rules:

1. Abstract classes cannot be instantiated directly.

2. Abstract classes may be defined with any number, including zero, of abstract and non-
abstract methods.

3. Abstract classes may not be marked as private or final.

4. An abstract class that extends another abstract class inherits all of its abstract methods 
as its own abstract methods.

5. The first concrete class that extends an abstract class must provide an implementation 
for all of the inherited abstract methods.

Abstract Method Defi nition Rules:

1. Abstract methods may only be defined in abstract classes.

2. Abstract methods may not be declared private or final.

3. Abstract methods must not provide a method body/implementation in the abstract 
class for which is it declared.

4. Implementing an abstract method in a subclass follows the same rules for overriding a 
method. For example, the name and signature must be the same, and the visibility of 
the method in the subclass must be at least as accessible as the method in the parent 
class.



266 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 266

Implementing Interfaces

Although Java doesn’t allow multiple inheritance, it does allow classes to implement any 
number of interfaces. An interface is an abstract data type that defi nes a list of abstract 
public methods that any class implementing the interface must provide. An interface can 
also include a list of constant variables and default methods, which we’ll cover in this sec-
tion. In Java, an interface is defi ned with the interface keyword, analogous to the class 
keyword used when defi ning a class. A class invokes the interface by using the implements 
keyword in its class defi nition. Refer to Figures 5.4 and 5.5 for proper syntax usage.

F I GU R E 5 . 4   Defining an interface

public abstract interface CanBurrow {

     public static final int MINIMUM_DEPTH = 2;

     public abstract int getMaximumDepth();

}

public or default access modifier

abstract keyword (assumed)

public abstract keywords (assumed)
public static final keywords (assumed)

interface keyword (required)

interface name

F I GU R E 5 .5   Implementing an interface

public class FieldMouse implements CanBurrow {

     public int getMaximumDepth() {

          return 10;

     }

}

class name

implements keyword (required)

interface name

signature matches interface method

As you see in this example, an interface is not declared an abstract class, although it 
has many of the same properties of abstract class. Notice that the method modifi ers in this 



Implementing Interfaces 267

c05.indd 1½  4/2014 Page 267

example, abstract and public, are assumed. In other words, whether or not you provide 
them, the compiler will automatically insert them as part of the method defi nition.

A class may implement multiple interfaces, each separated by a comma, such as in the 
following example:

public class Elephant implements WalksOnFourLegs, HasTrunk, Herbivore {

}

In the example, if any of the interfaces defi ned abstract methods, the concrete class 
Elephant would be required to implement those methods.

New to Java 8 is the notion of default and static interface methods, which we’ll cover at 
the end of this section.

Defining an Interface
It may be helpful to think of an interface as a specialized kind of abstract class, since it 
shares many of the same properties and rules as an abstract class. The following is a list 
of rules for creating an interface, many of which you should recognize as adaptions of the 
rules for defi ning abstract classes.

1. Interfaces cannot be instantiated directly.

2. An interface is not required to have any methods.

3. An interface may not be marked as final.

4. All top-level interfaces are assumed to have public or default access, and they must 
include the abstract modifier in their definition. Therefore, marking an interface as 
private, protected, or final will trigger a compiler error, since this is incompatible 
with these assumptions. 

5. All nondefault methods in an interface are assumed to have the modifiers abstract 
and public in their definition. Therefore, marking a method as private, protected, 
or final will trigger compiler errors as these are incompatible with the abstract and 
public keywords.

The fourth rule doesn’t apply to inner interfaces, although inner classes and interfaces 
are not in scope for the OCA exam. The fi rst three rules are identical to the fi rst three rules 
for creating an abstract class. Imagine we have an interface WalksOnTwoLegs, defi ned as 
follows:

public interface WalksOnTwoLegs {}

It compiles without issue, since interfaces are not required to defi ne any methods. Now 
consider the following two examples, which do not compile:

public class TestClass {

  public static void main(String[] args) {

    WalksOnTwoLegs example = new WalksOnTwoLegs();  // DOES NOT COMPILE



268 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 268

  }

}

public final interface WalksOnEightLegs {  // DOES NOT COMPILE

}

The fi rst example doesn’t compile, as WalksOnTwoLegs is an interface and cannot be 
instantiated directly. The second example, WalksOnEightLegs, doesn’t compile since inter-
faces may not be marked as final for the same reason that abstract classes cannot be 
marked as final. 

The fourth and fi fth rule about “assumed keywords” might be new to you, but you 
should think of these in the same light as the compiler inserting a default no-argument con-
structor or super() statement into your constructor. You may provide these modifi ers your-
self, although the compiler will insert them automatically if you do not. For example, the 
following two interface defi nitions are equivalent, as the compiler will convert them both to 
the second example:

public interface CanFly {

  void fly(int speed);

  abstract void takeoff();

  public abstract double dive();

}

public abstract interface CanFly {

  public abstract void fly(int speed);

  public abstract void takeoff();

  public abstract double dive();

}

In this example, the abstract keyword is fi rst automatically added to the interface 
defi nition. Then, each method is prepended with abstract and public keywords. If the 
method already has either of these keywords, then no change is required. Let’s take a look 
at an example that violates the assumed keywords:

private final interface CanCrawl {  // DOES NOT COMPILE

  private void dig(int depth);  // DOES NOT COMPILE

  protected abstract double depth();  // DOES NOT COMPILE

  public final void surface();  // DOES NOT COMPILE

}

Every single line of this example doesn’t compile. The fi rst line doesn’t compile for two 
reasons. First, it is marked as final, which cannot be applied to an interface since it con-
fl icts with the assumed abstract keyword. Next, it is marked as private, which confl icts 
with the public or default required access for interfaces. The second and third line do 
not compile because all interface methods are assumed to be public and marking them 



Implementing Interfaces 269

c05.indd 1½  4/2014 Page 269

as private or protected throws a compiler error. Finally, the last line doesn’t compile 
because the method is marked as final and since interface methods are assumed to be 
abstract, the compiler throws an exception for using both abstract and final keywords 
on a method.

Adding the assumed keywords to an interface is a matter of personal 
preference, although it is considered good coding practice to do so. Code 
with the assumed keywords written out tends to be easier and clearer to 
read, and leads to fewer potential conflicts, as you saw in the previous 
examples.

Be sure to review the previous example and understand why each of the lines doesn’t 
compile. There will likely be at least one question on the exam in which an interface or 
interface method uses an invalid modifi er.

Inheriting an Interface
There are two inheritance rules you should keep in mind when extending an interface:

1. An interface that extends another interface, as well as an abstract class that 
implements an interface, inherits all of the abstract methods as its own abstract 
methods.

2. The first concrete class that implements an interface, or extends an abstract class 
that implements an interface, must provide an implementation for all of the inherited 
abstract methods.

Like an abstract class, an interface may be extended using the extend keyword. In this 
manner, the new child interface inherits all the abstract methods of the parent interface. 
Unlike an abstract class, though, an interface may extend multiple interfaces. Consider the 
following example:

public interface HasTail {

  public int getTailLength();

}

public interface HasWhiskers {

  public int getNumberOfWhiskers();

}

public interface Seal extends HasTail, HasWhiskers {

}

Any class that implements the Seal interface must provide an implementation for all meth-
ods in the parent interfaces—in this case, getTailLength() and getNumberOfWhiskers().



270 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 270

What about an abstract class that implements an interface? In this scenario, the abstract 
class is treated in the same way as an interface extending another interface. In other words, 
the abstract class inherits the abstract methods of the interface but is not required to imple-
ment them. That said, like an abstract class, the fi rst concrete class to extend the abstract 
class must implement all the inherited abstract methods of the interface. We illustrate this 
in the following example:

public interface HasTail {

  public int getTailLength();

}

public interface HasWhiskers {

  public int getNumberOfWhiskers();

}

public abstract class HarborSeal implements HasTail, HasWhiskers {

}

public class LeopardSeal implements HasTail, HasWhiskers {  // DOES NOT COMPILE

}

In this example, we see that HarborSeal is an abstract class and compiles without issue. 
Any class that extends HarborSeal will be required to implement all of the methods in 
the HasTail and HasWhiskers interface. Alternatively, LeopardSeal is not an abstract 
class, so it must implement all the interface methods within its defi nition. In this example, 
LeopardSeal doesn’t provide an implementation for the interface methods, so the code 
doesn’t compile.

Classes, Interfaces, and Keywords
The exam creators are fond of questions that mix class and interface terminology. Although 
a class can implement an interface, a class cannot extend an interface. Likewise, whereas 
an interface can extend another interface, an interface cannot implement another interface. 
The following examples illustrate these principles:

public interface CanRun {}

public class Cheetah extends CanRun {}  // DOES NOT COMPILE

public class Hyena {}

public interface HasFur extends Hyena {} // DOES NOT COMPILE

The fi rst example shows a class trying to extend an interface that doesn’t compile. The 
second example shows an interface trying to extend a class, which also doesn’t compile. 



Implementing Interfaces 271

c05.indd 1½  4/2014 Page 271

Be wary of examples on the exam that mix class and interface defi nitions. Make sure the 
only connection between a class and an interface is with the class implements interface 
syntax.

Abstract Methods and Multiple Inheritance
Since Java allows for multiple inheritance via interfaces, you might be wondering what 
will happen if you defi ne a class that inherits from two interfaces that contain the same 
abstract method:

public interface Herbivore {

  public void eatPlants();

}

public interface Omnivore {

  public void eatPlants();

  public void eatMeat();

}

In this scenario, the signatures for the two interface methods eatPlants() are compat-
ible, so you can defi ne a class that fulfi lls both interfaces simultaneously:

public class Bear implements Herbivore, Omnivore {

  public void eatMeat() {

    System.out.println("Eating meat");

  }

  public void eatPlants() {

    System.out.println("Eating plants");

  }

}

Why does this work? Remember that interface methods in this example are abstract 
and defi ne the “behavior” that the class implementing the interface must have. If two 
abstract interface methods have identical behaviors—or in this case the same method 
signature— creating a class that implements one of the two methods automatically imple-
ments the second method. In this manner, the interface methods are considered duplicates 
since they have the same signature.

What happens if the two methods have different signatures? If the method name is the 
same but the input parameters are different, there is no confl ict because this is considered a 
method overload. We demonstrate this principle in the following example:

public interface Herbivore {

  public int eatPlants(int quantity);

}



272 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 272

public interface Omnivore {

  public void eatPlants();

}

public class Bear implements Herbivore, Omnivore {

  public int eatPlants(int quantity) {

    System.out.println("Eating plants: "+quantity);

    return quantity;

  }

  public void eatPlants() {

    System.out.println("Eating plants");

  }

}

In this example, we see that the class that implements both interfaces must provide 
implements of both versions of eatPlants(), since they are considered separate methods. 
Notice that it doesn’t matter if the return type of the two methods is the same or different, 
because the compiler treats these methods as independent.

Unfortunately, if the method name and input parameters are the same but the return 
types are different between the two methods, the class or interface attempting to inherit 
both interfaces will not compile. The reason the code doesn’t compile has less to do with 
interfaces and more to do with class design, as discussed in Chapter 4. It is not possible in 
Java to defi ne two methods in a class with the same name and input parameters but differ-
ent return types. Given the following two interface defi nitions for Herbivore and Omnivore, 
the following code will not compile:

public interface Herbivore {

  public int eatPlants();

}

public interface Omnivore {

  public void eatPlants();

}

public class Bear implements Herbivore, Omnivore {

  public int eatPlants() {  // DOES NOT COMPILE

    System.out.println("Eating plants: 10");

    return 10;

  }

  public void eatPlants() {  // DOES NOT COMPILE

    System.out.println("Eating plants");

  }

}



Implementing Interfaces 273

c05.indd 1½  4/2014 Page 273

The code doesn’t compile, as the class defi nes two methods with the same name and 
input parameters but different return types. If we were to remove either defi nition of eat-
Plants(), the compiler would stop because the defi nition of Bear would be missing one 
of the required methods. In other words, there is no implementation of the Bear class that 
inherits from Herbivore and Omnivore that the compiler would accept.

The compiler would also throw an exception if you defi ne an interface or abstract class 
that inherits from two confl icting interfaces, as shown here:

public interface Herbivore {

  public int eatPlants();

}

public interface Omnivore {

  public void eatPlants();

}

public interface Supervore extends Herbivore, Omnivore {} // DOES NOT COMPILE

public abstract class AbstractBear implements Herbivore, Omnivore {}

                                                 // DOES NOT COMPILE

Even without implementation details, the compiler detects the problem with the 
abstract defi nition and prevents compilation.

This concludes our discussion of abstract interface methods and multiple inheritance. 
We’ll return to this discussion shortly after we introduce default interface methods. You’ll 
see that things work a bit differently with default interface methods.

Interface Variables
Let’s expand our discussion of interfaces to include interface variables, which can be 
defi ned within an interface. Like interface methods, interface variables are assumed to 
be public. Unlike interface methods, though, interface variables are also assumed to be 
static and final.

Here are two interface variables rules:

1. Interface variables are assumed to be public, static, and final. Therefore, marking 
a variable as private or protected will trigger a compiler error, as will marking any 
variable as abstract. 

2. The value of an interface variable must be set when it is declared since it is marked as 
final.

In this manner, interface variables are essentially constant variables defi ned on the 
interface level. Because they are assumed to be static, they are accessible even without 



274 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 274

an instance of the interface. Like our earlier CanFly example, the following two interface 
defi nitions are equivalent, because the compiler will automatically convert them both to the 
second example:

public interface CanSwim {

  int MAXIMUM_DEPTH = 100;

  final static boolean UNDERWATER = true;

  public static final String TYPE = "Submersible";

}

public interface CanSwim {

  public static final int MAXIMUM_DEPTH = 100;

  public static final boolean UNDERWATER = true;

  public static final String TYPE = "Submersible";

}

As we see in this example, the compile will automatically insert public static final to 
any constant interface variables it fi nds missing those modifi ers. Also note that it is a com-
mon coding practice to use uppercase letters to denote constant values within a class.

Based on these rules, it should come as no surprise that the following entries will not 
compile:

public interface CanDig {

  private int MAXIMUM_DEPTH = 100;  // DOES NOT COMPILE

  protected abstract boolean UNDERWATER = false;  // DOES NOT COMPILE

  public static String TYPE;  // DOES NOT COMPILE

}

The fi rst example, MAXIMUM_DEPTH, doesn’t compile because the private modifi er is used, 
and all interface variables are assumed to be public. The second line, UNDERWATER, doesn’t 
compile for two reasons. It is marked as protected, which confl icts with the assumed 
modifi er public, and it is marked as abstract, which confl icts with the assumed modifi er 
final. Finally, the last example, TYPE, doesn’t compile because it is missing a value. Unlike 
the other examples, the modifi ers are correct, but as you may remember from Chapter 4, 
you must provide a value to a static final member of the class when it is defi ned.

Default Interface Methods
With the release of Java 8, the authors of Java have introduced a new type of method to an 
interface, referred to as a default method. A default method is a method defi ned within an 
interface with the default keyword in which a method body is provided. Contrast default 
methods with “regular” methods in an interface, which are assumed to be abstract and 
may not have a method body.



Implementing Interfaces 275

c05.indd 1½  4/2014 Page 275

A default method within an interface defi nes an abstract method with a default imple-
mentation. In this manner, classes have the option to override the default method if they 
need to, but they are not required to do so. If the class doesn’t override the method, the 
default implementation will be used. In this manner, the method defi nition is concrete, not 
abstract.

The purpose of adding default methods to the Java language was in part to help with 
code development and backward compatibility. Imagine you have an interface that is 
shared among dozens or even hundreds of users that you would like to add a new method 
to. If you just update the interface with the new method, the implementation would break 
among all of your subscribers, who would then be forced to update their code. In practice, 
this might even discourage you from making the change altogether. By providing a default 
implementation of the method, though, the interface becomes backward compatible with 
the existing codebase, while still providing those individuals who do want to use the new 
method with the option to override it.

The following is an example of a default method defi ned in an interface:

public interface IsWarmBlooded {

  boolean hasScales();

  public default double getTemperature() {

    return 10.0;

  }

}

This example defi nes two interface methods, one is a normal abstract method and the 
other a default method. Note that both methods are assumed to be public, as all methods 
of an interface are all public. The fi rst method is terminated with a semicolon and doesn’t 
provide a body, whereas the second default method provides a body. Any class that imple-
ments IsWarmBlooded may rely on the default implementation of getTemperature() or 
override the method and create its own version.

Note that the default access modifi er as defi ned in Chapter 4 is completely different from 
the default method defi ned in this chapter. We defi ned a default access modifi er in Chapter 4 as 
lack of an access modifi er, which indicated a class may access a class, method, or value within 
another class if both classes are within the same package. In this chapter, we are specifi cally 
talking about the keyword default as applied to a method within an interface. Because all 
methods within an interface are assumed to be public, the access modifi er for a default method 
is therefore public.

The following are the default interface method rules you need to be familiar with:

1. A default method may only be declared within an interface and not within a class or 
abstract class.

2. A default method must be marked with the default keyword. If a method is marked as 
default, it must provide a method body.

3. A default method is not assumed to be static, final, or abstract, as it may be used 
or overridden by a class that implements the interface.



276 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 276

4. Like all methods in an interface, a default method is assumed to be public and will not 
compile if marked as private or protected.

The fi rst rule should give you some comfort in that you’ll only see default methods in 
interfaces. If you see them in a class on the exam, assume the code will not compile. The 
second rule just denotes syntax, as default methods must use the default keyword. For 
example, the following code snippets will not compile:

public interface Carnivore {

  public default void eatMeat();  // DOES NOT COMPILE

  public int getRequiredFoodAmount() {  // DOES NOT COMPILE

    return 13;

  }

}

In this example, the fi rst method, eatMeat(), doesn’t compile because it is marked as 
default but doesn’t provide a method body. The second method, getRequiredFood
Amount(), also doesn’t compile because it provides a method body but is not marked with 
the default keyword.

Unlike interface variables, which are assumed static class members, default methods 
cannot be marked as static and require an instance of the class implementing the inter-
face to be invoked. They can also not be marked as final or abstract, because they are 
allowed to be overridden in subclasses but are not required to be overridden.

When an interface extends another interface that contains a default method, it may 
choose to ignore the default method, in which case the default implementation for the 
method will be used. Alternatively, the interface may override the defi nition of the default 
method using the standard rules for method overriding, such as not limiting the acces-
sibility of the method and using covariant returns. Finally, the interface may redeclare the 
method as abstract, requiring classes that implement the new interface to explicitly provide 
a method body. Analogous options apply for an abstract class that implements an interface.

For example, the following class overrides one default interface method and redeclares a 
second interface method as abstract:

public interface HasFins {

  public default int getNumberOfFins() {

    return 4;

  }

  public default double getLongestFinLength() {

    return 20.0;

  }

  public default boolean doFinsHaveScales() {

    return true;

  }

}



Implementing Interfaces 277

c05.indd 1½  4/2014 Page 277

public interface SharkFamily extends HasFins {

  public default int getNumberOfFins() {

    return 8;

  }

  public double getLongestFinLength();

  public boolean doFinsHaveScales() {  // DOES NOT COMPILE

    return false;

  }

}

In this example, the fi rst interface, HasFins, defi nes three default methods: 
getNumberOfFins(), getLongestFinLength(), and doFinsHaveScales(). The 
second interface, SharkFamily, extends HasFins and overrides the default method 
getNumberOfFins() with a new method that returns a different value. Next, the 
SharkFamily interface replaces the default method getLongestFinLength() with a new 
abstract method, forcing any class that implements the SharkFamily interface to provide 
an implementation of the method. Finally, the SharkFamily interface overrides the 
doFinsHaveScales() method but doesn’t mark the method as default. Since interfaces 
may only contain methods with a body that are marked as default, the code will not 
compile.

Because default methods are new to Java 8, there will probably be a few questions 
on the exam about them, although they likely will not be any more diffi cult than the 
previous example.

Default Methods and Multiple Inheritance
You may have realized that by allowing default methods in interfaces, coupled with the fact 
a class may implement multiple interfaces, Java has essentially opened the door to multiple 
inheritance problems. For example, what value would the following code output?

public interface Walk {

  public default int getSpeed() {

    return 5;

  }

}

public interface Run {

  public default int getSpeed() {

    return 10;

  }

}

public class Cat implements Walk, Run {  // DOES NOT COMPILE

  public static void main(String[] args) {

    System.out.println(new Cat().getSpeed());

  }

}



278 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 278

In this example, Cat inherits the two default methods for getSpeed(), so which does it 
use? Since Walk and Run are considered siblings in terms of how they are used in the Cat 
class, it is not clear whether the code should output 5 or 10. The answer is that the code 
outputs neither value—it fails to compile.

If a class implements two interfaces that have default methods with the same name and 
signature, the compiler will throw an error. There is an exception to this rule, though: if 
the subclass overrides the duplicate default methods, the code will compile without 
issue—the ambiguity about which version of the method to call has been removed. For 
example, the following modifi ed implementation of Cat will compile and output 1:

public class Cat implements Walk, Run {  

  public int getSpeed() {

    return 1;

  }

  public static void main(String[] args) {

    System.out.println(new Cat().getSpeed());

  }

}

You can see that having a class that implements or inherits two duplicate default meth-
ods forces the class to implement a new version of the method, or the code will not compile. 
This rule holds true even for abstract classes that implement multiple interfaces, because 
the default method could be called in a concrete method within the abstract class.

Static Interface Methods
Java 8 also now includes support for static methods within interfaces. These methods are 
defi ned explicitly with the static keyword and function nearly identically to static meth-
ods defi ned in classes, as discussed in Chapter 4. In fact, there is really only one distinction 
between a static method in a class and an interface. A static method defi ned in an interface 
is not inherited in any classes that implement the interface.

Here are the static interface method rules you need to be familiar with:

1. Like all methods in an interface, a static method is assumed to be public and will not 
compile if marked as private or protected.

2. To reference the static method, a reference to the name of the interface must be used.

The following is an example of a static method defi ned in an interface:

public interface Hop {

  static int getJumpHeight() {

    return 8;

  }

}



Understanding Polymorphism 279

c05.indd 1½  4/2014 Page 279

The method getJumpHeight() works just like a static method as defi ned in a class. In other 
words, it can be accessed without an instance of the class using the Hop.getJumpHeight() syn-
tax. Also, note that the compiler will automatically insert the access modifi er public since all 
methods in interfaces are assumed to be public.

The following is an example of a class Bunny that implements Hop:

public class Bunny implements Hop {

  public void printDetails() {

    System.out.println(getJumpHeight()); // DOES NOT COMPILE

  }

}

As you can see, without an explicit reference to the name of the interface the code will 
not compile, even though Bunny implements Hop. In this manner, the static interface meth-
ods are not inherited by a class implementing the interface. The following modifi ed version 
of the code resolves the issue with a reference to the interface name Hop:

public class Bunny implements Hop {

  public void printDetails() {

    System.out.println(Hop.getJumpHeight());

  }

}

It follows, then, that a class that implements two interfaces containing static methods 
with the same signature will still compile at runtime, because the static methods are not 
inherited by the subclass and must be accessed with a reference to the interface name. 
Contrast this with the behavior you saw for default interface methods in the previous sec-
tion: the code would compile if the subclass overrode the default methods and would fail to 
compile otherwise. You can see that static interface methods have none of the same multiple 
inheritance issues and rules as default interface methods do.

Understanding Polymorphism

Java supports polymorphism, the property of an object to take on many different forms. To 
put this more precisely, a Java object may be accessed using a reference with the same type 
as the object, a reference that is a superclass of the object, or a reference that defi nes an 
interface the object implements, either directly or through a superclass. Furthermore, a cast 
is not required if the object is being reassigned to a super type or interface of the object.

Let’s illustrate this polymorphism property with the following example:

public class Primate {

  public boolean hasHair() {

    return true;



280 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 280

  }

}

public interface HasTail {

  public boolean isTailStriped();

}

public class Lemur extends Primate implements HasTail {

  public boolean isTailStriped() {

    return false;

  }

  public int age = 10;

  public static void main(String[] args) {

    Lemur lemur = new Lemur();

    System.out.println(lemur.age);

    HasTail hasTail = lemur;

    System.out.println(hasTail.isTailStriped());

    Primate primate = lemur;

    System.out.println(primate.hasHair());

    }

}

This code compiles and executes without issue and yields the following output:

10

false

true

The most important thing to note about this example is that only one object, Lemur, is 
created and referenced. The ability of an instance of Lemur to be passed as an instance of an 
interface it implements, HasTail, as well as an instance of one of its superclasses, Primate, 
is the nature of polymorphism.

Once the object has been assigned a new reference type, only the methods and variables 
available to that reference type are callable on the object without an explicit cast. For 
example, the following snippets of code will not compile:

    HasTail hasTail = lemur;

    System.out.println(hasTail.age);  // DOES NOT COMPILE



Understanding Polymorphism 281

c05.indd 1½  4/2014 Page 281

   Primate primate = lemur;

   System.out.println(primate.isTailStriped());  // DOES NOT COMPILE

In this example, the reference hasTail has direct access only to methods defi ned with 
the HasTail interface; therefore, it doesn’t know the variable age is part of the object. 
Likewise, the reference primate has access only to methods defi ned in the Primate class, 
and it doesn’t have direct access to the isTailStriped() method.

Object vs. Reference
In Java, all objects are accessed by reference, so as a developer you never have direct access 
to the object itself. Conceptually, though, you should consider the object as the entity that 
exists in memory, allocated by the Java runtime environment. Regardless of the type of the 
reference you have for the object in memory, the object itself doesn’t change. For example, 
since all objects inherit java.lang.Object, they can all be reassigned to java.lang.Object, 
as shown in the following example:

Lemur lemur = new Lemur();

Object lemurAsObject = lemur;

Even though the Lemur object has been assigned a reference with a different type, the 
object itself has not changed and still exists as a Lemur object in memory. What has changed, 
then, is our ability to access methods within the Lemur class with the lemurAsObject refer-
ence. Without an explicit cast back to Lemur, as you’ll see in the next section, we no longer 
have access to the Lemur properties of the object.

We can summarize this principle with the following two rules:

1. The type of the object determines which properties exist within the object in memory.

2. The type of the reference to the object determines which methods and variables are 
accessible to the Java program.

It therefore follows that successfully changing a reference of an object to a new reference 
type may give you access to new properties of the object, but those properties existed before 
the reference change occurred.

Let’s illustrate this property using the previous example in Figure 5.6. As you can see in 
the fi gure, the same object exists in memory regardless of which reference is pointing to it. 
Depending on the type of the reference, we may only have access to certain methods. For 
example, the hasTail reference has access to the method isTailStriped() but doesn’t have 
access to the variable age defi ned in the Lemur class. As you’ll learn in the next section, it is 



282 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 282

possible to reclaim access to the variable age by explicitly casting the hasTail reference to a 
reference of type Lemur.

F I GU R E 5 .6   Object vs. reference

Reference of interface HasTail

hasTail

age

hasHair()

isTailStriped()

10

lemur

primate

Reference of class Lemur

Reference of class Primate

Lemur object in memory

Casting Objects
In the previous example, we created a single instance of a Lemur object and accessed it 
via superclass and interface references. Once we changed the reference type, though, 
we lost access to more specifi c methods defi ned in the subclass that still exist within the 
object. We can reclaim those references by casting the object back to the specifi c sub-
class it came from:

Primate primate = lemur;

Lemur lemur2 = primate; // DOES NOT COMPILE

Lemur lemur3 = (Lemur)primate;

System.out.println(lemur3.age);

In this example, we fi rst try to convert the primate reference back to a lemur reference, 
lemur2, without an explicit cast. The result is that the code will not compile. In the second 
example, though, we explicitly cast the object to a subclass of the object Primate and we 
gain access to all the methods available to the Lemur class.

Here are some basic rules to keep in mind when casting variables:

1. Casting an object from a subclass to a superclass doesn’t require an explicit cast.

2. Casting an object from a superclass to a subclass requires an explicit cast.

3. The compiler will not allow casts to unrelated types.

4. Even when the code compiles without issue, an exception may be thrown at runtime if 
the object being cast is not actually an instance of that class.



Understanding Polymorphism 283

c05.indd 1½  4/2014 Page 283

The third rule is important; the exam may try to trick you with a cast that the compiler 
doesn’t allow. For example, we were able to cast a Primate reference to a Lemur reference, 
because Lemur is a subclass of Primate and therefore related.

Consider this example:

public class Bird {}

public class Fish {

  public static void main(String[] args) {

    Fish fish = new Fish();

    Bird bird = (Bird)fish;  // DOES NOT COMPILE

  }

}

In this example, the classes Fish and Bird are not related through any class hierarchy 
that the compiler is aware of; therefore, the code will not compile.

Casting is not without its limitations. Even though two classes share a related hierar-
chy, that doesn’t mean an instance of one can automatically be cast to another. Here’s an 
example:

public class Rodent {

}

public class Capybara extends Rodent {

  public static void main(String[] args) {

    Rodent rodent = new Rodent();

    Capybara capybara = (Capybara)rodent; // Throws ClassCastException at runtime

  }

}

This code creates an instance of Rodent and then tries to cast it to a subclass of 
Rodent, Capybara. Although this code will compile without issue, it will throw a 
ClassCastException at runtime since the object being referenced is not an instance of the 
Capybara class. The thing to keep in mind in this example is the object that was created is 
not related to the Capybara class in any way.

Although this topic is out of scope for the OCA exam, keep in mind that the 
instanceof operator can be used to check whether an object belongs to a 
particular class and to prevent ClassCastExceptions at runtime. Unlike the 
previous example, the following code snippet doesn’t throw an exception at 
runtime and performs the cast only if the instanceof operator returns true.

if(rodent instanceof Capybara) {

  Capybara capybara = (Capybara)rodent;

}



284 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 284

When reviewing a question on the exam that involves casting and polymorphism, be 
sure to remember what the instance of the object actually is. Then, focus on whether the 
compiler will allow the object to be referenced with or without explicit casts.

Virtual Methods
The most important feature of polymorphism—and one of the primary reasons we have 
class structure at all—is to support virtual methods. A virtual method is a method in which 
the specifi c implementation is not determined until runtime. In fact, all non-fi nal, non-
static, and non-private Java methods are considered virtual methods, since any of them can 
be overridden at runtime. What makes a virtual method special in Java is that if you call a 
method on an object that overrides a method, you get the overridden method, even if the 
call to the method is on a parent reference or within the parent class.

We’ll illustrate this principle with the following example:

public class Bird {

  public String getName() {

    return "Unknown";

  }

  public void displayInformation() {

    System.out.println("The bird name is: "+getName());

  }

}

public class Peacock extends Bird {

  public String getName() {

    return "Peacock";

  }

  public static void main(String[] args) {

    Bird bird = new Peacock();

    bird.displayInformation();

  }

} 

This code compiles and executes without issue and outputs the following:

The bird name is: Peacock

As you saw in similar examples in the section “Overriding a Method,” the method 
getName() is overridden in the child class Peacock. More importantly, though, the value of 
the getName() method at runtime in the displayInformation() method is replaced with 
the value of the implementation in the subclass Peacock.



Understanding Polymorphism 285

c05.indd 1½  4/2014 Page 285

In other words, even though the parent class Bird defi nes its own version of getName() 
and doesn’t know anything about the Peacock class during compile-time, at runtime the 
instance uses the overridden version of the method, as defi ned on the instance of the object. 
We emphasize this point by using a reference to the Bird class in the main() method, 
although the result would have been the same if a reference to Peacock was used.

You now know the true purpose of overriding a method and how it relates to polymor-
phism. The nature of the polymorphism is that an object can take on many different forms. 
By combining your understanding of polymorphism with method overriding, you see 
that objects may be interpreted in vastly different ways at runtime, especially in methods 
defi ned in the superclasses of the objects.

Polymorphic Parameters
One of the most useful applications of polymorphism is the ability to pass instances of 
a subclass or interface to a method. For example, you can defi ne a method that takes an 
instance of an interface as a parameter. In this manner, any class that implements the inter-
face can be passed to the method. Since you’re casting from a subtype to a supertype, an 
explicit cast is not required. This property is referred to as polymorphic parameters of a 
method, and we demonstrate it in the following example:

public class Reptile {

  public String getName() {

    return "Reptile";

  }

}

public class Alligator extends Reptile {

  public String getName() {

    return "Alligator";

  }

}

public class Crocodile extends Reptile {

  public String getName() {

    return "Crocodile";

  }

}

public class ZooWorker {

  public static void feed(Reptile reptile) {

    System.out.println("Feeding reptile "+reptile.getName());

  }



286 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 286

  public static void main(String[] args) {

    feed(new Alligator());

    feed(new Crocodile());

    feed(new Reptile());

  }

}

This code compiles and executes without issue, yielding the following output:

Feeding: Alligator

Feeding: Crocodile

Feeding: Reptile

Let’s focus on the feed(Reptile reptile) method in this example. As you can see, that 
method was able to handle instances of Alligator and Crocodile without issue, because 
both are subclasses of the Reptile class. It was also able to accept a matching type Reptile 
class. If we had tried to pass an unrelated class, such as the previously defi ned Rodent or 
Capybara classes, or a superclass such as java.lang.Object, to the feed() method, the 
code would not have compiled.

Polymorphic Parameters and Code Reusability

If you’re defi ning a method that will be accessible outside the current class, either to 

subclasses of the current class or publicly to objects outside the current class, it is con-

sidered good coding practice to use the superclass or interface type of input parameters 

whenever possible.

As you may remember from Chapter 3, “Core Java APIs,” the type java.util.List is an 

interface, not a class. Although there are many classes that implement java.util.List, 

such as java.util.ArrayList and java.util.Vector, when you’re passing an existing 

List you’re not usually interested in the particular subclass of the List. In this manner, a 

method that passes a List should use the interface type java.util.List as the polymor-

phic parameter type, rather than a specifi c class that implements List, as the code will be 

more reusable for other types of lists.

For example, it is common to see code such as the following that uses the interface refer-

ence type over the class type for greater reusability:

java.util.List list = new java.util.ArrayList();



Understanding Polymorphism 287

c05.indd 1½  4/2014 Page 287

Polymorphism and Method Overriding
Let’s conclude this chapter by returning to the last three rules for method overriding to 
demonstrate how polymorphism requires them to be included as part of the Java specifi ca-
tion. You’ll see that without such rules in place, it is easy to construct an example with 
polymorphism in Java.

The fi rst rule is that an overridden method must be at least as accessible as the method it 
is overriding. Let’s assume this rule is not necessary and consider the following example:

public class Animal {

  public String getName() {

    return "Animal";

  }

}

public class Gorilla extends Animal {

  protected String getName() {  // DOES NOT COMPILE

    return "Gorilla";

  }

}

public class ZooKeeper {

  public static void main(String[] args) {

    Animal animal = new Gorilla();

    System.out.println(animal.getName());

  }

}

For the purpose of this discussion, we’ll ignore the fact that the implementation of 
getName() in the Gorilla class doesn’t compile because it is less accessible than the ver-
sion it is overriding in the Animal class.

As you can see, this example creates an ambiguity problem in the ZooKeeper class. The 
reference animal.getName() is allowed because the method is public in the Animal class, 
but due to polymorphism, the Gorilla object itself has been overridden with a less acces-
sible version, not available to the ZooKeeper class. This creates a contradiction in that the 
compiler should not allow access to this method, but because it is being referenced as an 
instance of Animal, it is allowed. Therefore, Java eliminates this contradiction, thus disal-
lowing a method from being overridden by a less accessible version of the method.

Likewise, a subclass cannot declare an overridden method with a new or broader 
exception than in the superclass, since the method may be accessed using a reference to 
the superclass. For example, if an instance of the subclass is passed to a method using a 
superclass reference, then the enclosing method would not know about any new checked 
exceptions that exist on methods for this object, potentially leading to compiled code with 



288 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 288

“unchecked” checked exceptions. Therefore, the Java compiler disallows overriding meth-
ods with new or broader exceptions.

Finally, overridden methods must use covariant return types for the same kinds of 
reasons as just discussed. If an object is cast to a superclass reference and the overridden 
method is called, the return type must be compatible with the return type of the parent 
method. If the return type in the child is too broad, it will result an inherent cast exception 
when accessed through the superclass reference.

For example, if the return type of a method is Double in the parent class and is overridden 
in a subclass with a method that returns Number, a superclass of Double, then the subclass 
method would be allowed to return any valid Number, including Integer, another subclass of 
Number. If we are using the object with a reference to the superclass, that means an Integer 
could be returned when a Double was expected. Since Integer is not a subclass of Double, 
this would lead to an implicit cast exception as soon as the value was referenced. Java solves 
this problem by only allowing covariant return types for overridden methods.

Summary

This chapter took the basic class structure we presented in Chapter 4 and expanded it by 
introducing the notion of inheritance. Java classes follow a multilevel single-inheritance 
pattern in which every class has exactly one direct parent class, with all classes eventu-
ally inheriting from java.lang.Object. Java interfaces simulate a limited form of multiple 
inheritance, since Java classes may implement multiple interfaces.

Inheriting a class gives you access to all of the public and protected methods of the 
class, but special rules for constructors and overriding methods must be followed or the 
code will not compile. For example, if the parent class doesn’t include a no-argument con-
structor, an explicit call to a parent constructor must be provided in the child’s construc-
tors. Pay close attention on the exam to any class that defi nes a constructor with arguments 
and doesn’t defi ne a no-argument constructor.

We reviewed overloaded, overridden, and hidden methods and showed how they differ, 
especially in terms of polymorphism. We also introduced the notion of hiding variables, 
although we strongly discourage this in practice as it often leads to confusing, diffi cult-to-
maintain code.

We introduced abstract classes and interfaces and showed how you can use them to 
defi ne a platform for other developers to interact with. By defi nition, an abstract type can-
not be instantiated directly and requires a concrete subclass for the code to be used. Since 
default and static interface methods are new to Java 8, expect to see at least one question 
on them on the exam.



Exam Essentials 289

c05.indd 1½  4/2014 Page 289

Finally, this chapter introduced the concept of polymorphism, central to the Java lan-
guage, and showed how objects can be accessed in a variety of forms. Make sure you 
understand when casts are needed for accessing objects, and be able to spot the difference 
between compile-time and runtime cast problems.

Exam Essentials

Be able to write code that extends other classes.  A Java class that extends another class 
inherits all of its public and protected methods and variables. The fi rst line of every 
constructor is a call to another constructor within the class using this() or a call to a con-
structor of the parent class using the super() call. If the parent class doesn’t contain a no-
argument constructor, an explicit call to the parent constructor must be provided. Parent 
methods and objects can be accessed explicitly using the super keyword. Finally, all classes 
in Java extend java.lang.Object either directly or from a superclass.

Understand the rules for method overriding.  The Java compiler allows methods to be 
overridden in subclasses if certain rules are followed: a method must have the same signa-
ture, be at least as accessible as the parent method, must not declare any new or broader 
exceptions, and must use covariant return types. 

Understand the rules for hiding methods and variables.  When a static method is re-
created in a subclass, it is referred to as method hiding. Likewise, variable hiding is when 
a variable name is reused in a subclass. In both situations, the original method or variable 
still exists and is used in methods that reference the object in the parent class. For method 
hiding, the use of static in the method declaration must be the same between the parent 
and child class. Finally, variable and method hiding should generally be avoided since it 
leads to confusing and diffi cult-to-follow code.

Recognize the difference between method overriding and method overloading.  Both 
method overloading and overriding involve creating a new method with the same name 
as an existing method. When the method signature is the same, it is referred to as method 
overriding and must follow a specifi c set of override rules to compile. When the method 
signature is different, with the method taking different inputs, it is referred to as method 
overloading and none of the override rules are required.

Be able to write code that creates and extends abstract classes.  In Java, classes and meth-
ods can be declared as abstract. Abstract classes cannot be instantiated and require a con-
crete subclass to be accessed. Abstract classes can include any number, including zero, of 
abstract and nonabstract methods. Abstract methods follow all the method override rules 
and may only be defi ned within abstract classes. The fi rst concrete subclass of an abstract 
class must implement all the inherited methods. Abstract classes and methods may not be 
marked as final or private.



290 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 290

Be able to write code that creates, extends, and implements interfaces.  Interfaces are similar 
to a specialized abstract class in which only abstract methods and constant static final 
variables are allowed. New to Java 8, an interface can also defi ne default and static meth-
ods with method bodies. All members of an interface are assumed to be public. Methods 
are assumed to be abstract if not explicitly marked as default or static. An interface that 
extends another interface inherits all its abstract methods. An interface cannot extend a class, 
nor can a class extend an interface. Finally, classes may implement any number of interfaces.

Be able to write code that uses default and static interface methods.  A default method 
allows a developer to add a new method to an interface used in existing implementations, 
without forcing other developers using the interface to recompile their code. A developer 
using the interface may override the default method or use the provided one. A static 
method in an interface follows the same rules for a static method in a class.

Understand polymorphism.  An object in Java may take on a variety of forms, in part 
depending on the reference used to access the object. Methods that are overridden will be 
replaced everywhere they are used, whereas methods and variables that are hidden will 
only be replaced in the classes and subclasses that they are defi ned. It is common to rely on 
polymorphic parameters—the ability of methods to be automatically passed as a superclass 
or interface reference—when creating method defi nitions.

Recognize valid reference casting.  An instance can be automatically cast to a superclass 
or interface reference without an explicit cast. Alternatively, an explicit cast is required if 
the reference is being narrowed to a subclass of the object. The Java compiler doesn’t per-
mit casting to unrelated types. You should be able to discern between compiler-time casting 
errors and those that will not occur until runtime and that throw a CastClassException.



Review Questions 291

c05.indd 1½  4/2014 Page 291

Review Questions

1. What modifiers are implicitly applied to all interface methods? (Choose all that apply)

A. protected

B. public

C. static

D. void

E. abstract

F. default

2. What is the output of the following code?
1: class Mammal {

2:   public Mammal(int age) {

3:     System.out.print("Mammal");

4:   }

5: }

6: public class Platypus extends Mammal {

7:   public Platypus() {

8:     System.out.print("Platypus");

9:   }

10:   public static void main(String[] args) {

11:     new Mammal(5);

12:   }

13: }

A. Platypus

B. Mammal

C. PlatypusMammal

D. MammalPlatypus

E. The code will not compile because of line 8.

F. The code will not compile because of line 11.

3. Which of the following statements can be inserted in the blank line so that the code will 
compile successfully? (Choose all that apply)
public interface CanHop {}

public class Frog implements CanHop {

   public static void main(String[] args) {

      frog = new TurtleFrog();

   }

}



292 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 292

public class BrazilianHornedFrog extends Frog {}

public class TurtleFrog extends Frog {}

A. Frog

B. TurtleFrog

C. BrazilianHornedFrog

D. CanHop

E. Object

F. Long

4. Which statement(s) are correct about the following code? (Choose all that apply)
public class Rodent {

  protected static Integer chew() throws Exception {

    System.out.println("Rodent is chewing");

    return 1;

  }

}

public class Beaver extends Rodent {

  public Number chew() throws RuntimeException {

    System.out.println("Beaver is chewing on wood");

    return 2;

  }

}

A. It will compile without issue.

B. It fails to compile because the type of the exception the method throws is a subclass of 
the type of exception the parent method throws.

C. It fails to compile because the return types are not covariant.

D. It fails to compile because the method is protected in the parent class and public in 
the subclass.

E. It fails to compile because of a static modifier mismatch between the two methods.

5. Which of the following may only be hidden and not overridden? (Choose all that apply)

A. private instance methods

B. protected instance methods

C. public instance methods

D. static methods

E. public variables

F. private variables



Review Questions 293

c05.indd 1½  4/2014 Page 293

6. Choose the correct statement about the following code:
1: interface HasExoskeleton {

2:   abstract int getNumberOfSections();

3: }

4: abstract class Insect implements HasExoskeleton {

5:   abstract int getNumberOfLegs();

6: }

7: public class Beetle extends Insect {

8:   int getNumberOfLegs() { return 6; }

9: }

A. It compiles and runs without issue.

B. The code will not compile because of line 2.

C. The code will not compile because of line 4.

D. The code will not compile because of line 7.

E. It compiles but throws an exception at runtime.

7. Which of the following statements about polymorphism are true? (Choose all that apply)

A. A reference to an object may be cast to a subclass of the object without an explicit cast.

B. If a method takes a superclass of three objects, then any of those classes may be passed 
as a parameter to the method.

C. A method that takes a parameter with type java.lang.Object will take any reference.

D. All cast exceptions can be detected at compile-time.

E. By defining a public instance method in the superclass, you guarantee that the specific 
method will be called in the parent class at runtime.

8. Choose the correct statement about the following code:
1: public interface Herbivore {

2:   int amount = 10;

3:   public static void eatGrass();

4:   public int chew() {

5:     return 13;

6:   }

7: }

A. It compiles and runs without issue.

B. The code will not compile because of line 2.

C. The code will not compile because of line 3.

D. The code will not compile because of line 4.

E. The code will not compile because of lines 2 and 3.

F. The code will not compile because of lines 3 and 4.



294 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 294

9. Choose the correct statement about the following code:
1: public interface CanFly {

2:   void fly();

3: }

4: interface HasWings {

5:   public abstract Object getWindSpan();

6: }

7: abstract class Falcon implements CanFly, HasWings {

8: }

A. It compiles without issue.

B. The code will not compile because of line 2.

C. The code will not compile because of line 4.

D. The code will not compile because of line 5.

E. The code will not compile because of lines 2 and 5.

F. The code will not compile because the class Falcon doesn’t implement the interface 
methods.

10. Which statements are true for both abstract classes and interfaces? (Choose all that apply)

A. All methods within them are assumed to be abstract.

B. Both can contain public static final variables.

C. Both can be extended using the extend keyword.

D. Both can contain default methods.

E. Both can contain static methods.

F. Neither can be instantiated directly.

G. Both inherit java.lang.Object.

11. What modifiers are assumed for all interface variables? (Choose all that apply)

A. public

B. protected

C. private

D. static

E. final

F. abstract

12. What is the output of the following code?
1: interface Nocturnal {

2:   default boolean isBlind() { return true; }

3: }

4: public class Owl implements Nocturnal {



Review Questions 295

c05.indd 1½  4/2014 Page 295

5:   public boolean isBlind() { return false; }

6:     public static void main(String[] args) {

7:     Nocturnal nocturnal = (Nocturnal)new Owl();

8:     System.out.println(nocturnal.isBlind());

9:     }

10: }

A. true

B. false

C. The code will not compile because of line 2.

D. The code will not compile because of line 5.

E. The code will not compile because of line 7.

F. The code will not compile because of line 8.

13. What is the output of the following code?
1: class Arthropod 

2:   public void printName(double input) { System.out
  .print("Arthropod"); }

3: }

4: public class Spider extends Arthropod {

5:   public void printName(int input) { System.out.print("Spider"); }

6:   public static void main(String[] args) {

7:     Spider spider = new Spider();

8:     spider.printName(4);

9:     spider.printName(9.0);

10:   }

11: }

A. SpiderArthropod

B. ArthropodSpider

C. SpiderSpider

D. ArthropodArthropod

E. The code will not compile because of line 5.

F. The code will not compile because of line 9.

14. Which statements are true about the following code? (Choose all that apply)
1: interface HasVocalCords {

2:   public abstract void makeSound();

3: }

4: public interface CanBark extends HasVocalCords {

5:   public void bark();

6: }



296 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 296

A. The CanBark interface doesn’t compile.

B. A class that implements HasVocalCords must override the makeSound() method.

C. A class that implements CanBark inherits both the makeSound() and bark() methods.

D. A class that implements CanBark only inherits the bark() method.

E. An interface cannot extend another interface.

15. Which of the following is true about a concrete subclass? (Choose all that apply)

A. A concrete subclass can be declared as abstract.

B. A concrete subclass must implement all inherited abstract methods.

C. A concrete subclass must implement all methods defined in an inherited interface.

D. A concrete subclass cannot be marked as final.

E. Abstract methods cannot be overridden by a concrete subclass.

16. What is the output of the following code?
1: abstract class Reptile {

2:   public final void layEggs() { System.out.println("Reptile laying eggs"); 
   }

3:     public static void main(String[] args) {

4:     Reptile reptile = new Lizard();

5:     reptile.layEggs();

6:     }

7: }

8: public class Lizard extends Reptile {

9:   public void layEggs() { System.out.println("Lizard laying eggs"); }

10: }

A. Reptile laying eggs

B. Lizard laying eggs

C. The code will not compile because of line 4.

D. The code will not compile because of line 5.

E. The code will not compile because of line 9.

17. What is the output of the following code?
1: public abstract class Whale {

2:   public abstract void dive() {};

3:   public static void main(String[] args) {

4:     Whale whale = new Orca();

5:     whale.dive();

6:   }

7: }



Review Questions 297

c05.indd 1½  4/2014 Page 297

8: class Orca extends Whale {

9:   public void dive(int depth) { System.out.println("Orca diving"); }

10: }

A. Orca diving

B. The code will not compile because of line 2.

C. The code will not compile because of line 8.

D. The code will not compile because of line 9.

E. The output cannot be determined from the code provided.

18. What is the output of the following code? (Choose all that apply)
1: interface Aquatic {

2:   public default int getNumberOfGills(int input) { return 2; }

3: }

4: public class ClownFish implements Aquatic {

5:   public String getNumberOfGills() { return "4"; }

6:   public String getNumberOfGills(int input) { return "6"; }

7:   public static void main(String[] args) {

8:     System.out.println(new ClownFish().getNumberOfGills(-1));

9:   }

10: }

A. 2

B. 4

C. 6

D. The code will not compile because of line 5.

E. The code will not compile because of line 6.

F. The code will not compile because of line 8.

19. Which of the following statements can be inserted in the blank so that the code will 
compile successfully? (Choose all that apply)
public class Snake {}

public class Cobra extends Snake {}

public class GardenSnake {}

public class SnakeHandler {

   private Snake snake;

   public void setSnake(Snake snake) { this.snake = snake; }

   public static void main(String[] args) {

     new SnakeHandler().setSnake( );

   }

}



298 Chapter 5 ■ Class Design

c05.indd 1½  4/2014 Page 298

A. new Cobra()

B. new GardenSnake()

C. new Snake()

D. new Object()

E. new String("Snake")

F. null

20. What is the result of the following code?
1: public abstract class Bird {

2:   private void fly() { System.out.println("Bird is flying"); }

3:   public static void main(String[] args) {

4:     Bird bird = new Pelican();

5:     bird.fly();

6:   }

7: }

8: class Pelican extends Bird {

9:   protected void fly() { System.out.println("Pelican is flying"); }

10: }

A. Bird is flying

B. Pelican is flying 

C. The code will not compile because of line 4.

D. The code will not compile because of line 5.

E. The code will not compile because of line 9. 



c06.indd 1½  4/2014 Page 299

Chapter 

6
Exceptions

OCA EXAM OBJECTIVES COVERED 
IN THIS CHAPTER:

 ✓ Handling Exceptions

 ■ Differentiate among checked exceptions, unchecked 

exceptions and Errors

 ■ Create a try-catch block and determine how exceptions alter 

normal program flow

 ■ Describe the advantages of Exception handling

 ■ Create and invoke a method that throws an exception

 ■ Recognize common exception classes (such as 

NullPointerException, ArithmeticException, 

ArrayIndexOutOfBoundsException, ClassCastException)



c06.indd 1½  4/2014 Page 300

Many things can go wrong in a program. Java uses exceptions to 
deal with some of these scenarios. The OCA exam covers only the 
basics of working with exceptions. The rest are on the OCP exam. 

Understanding Exceptions

A program can fail for just about any reason. Here are just a few possibilities:

 ■ The code tries to connect to a website, but the Internet connection is down.

 ■ You made a coding mistake and tried to access an invalid index in an array.

 ■ One method calls another with a value that the method doesn’t support.

As you can see, some of these are coding mistakes. Others are completely beyond your 
control. Your program can’t help it if the Internet connection goes down. What it can do is 
deal with the situation.

First, we’ll look at the role of exceptions. Then we’ll cover the various types of exceptions, 
followed by an explanation of how to throw an exception in Java.

The Role of Exceptions
An exception is Java’s way of saying, “I give up. I don’t know what to do right now. You 
deal with it.” When you write a method, you can either deal with the exception or make it 
the calling code’s problem.

As an example, think of Java as a child who visits the zoo. The happy path is when 
nothing goes wrong. The child continues to look at the animals until the program nicely 
ends. Nothing went wrong and there were no exceptions to deal with.

This child’s younger sister doesn’t experience the happy path. In all the excitement she 
trips and falls. Luckily, it isn’t a bad fall. The little girl gets up and proceeds to look at 
more animals. She has handled the issue all by herself. Unfortunately, she falls again later 
in the day and starts crying. This time, she has declared she needs help by crying. The 
story ends well. Her daddy rubs her knee and gives her a hug. Then they go back to seeing 
more animals and enjoy the rest of the day.

These are the two approaches Java uses when dealing with exceptions. A method can 
handle the exception case itself or make it the caller’s responsibility. You saw both in the 
trip to the zoo.



Understanding Exceptions 301

c06.indd 1½  4/2014 Page 301

You saw an exception in Chapter 1, “Java Building Blocks,” with a very simple Zoo 
example. You wrote a class that printed out the name of the zoo:

1: public class Zoo {

2:   public static void main(String[] args) {

3:     System.out.println(args[0]);

4:     System.out.println(args[1]);

5: } }

Then you tried to call it without enough arguments:

$ javac Zoo.java 

$ java Zoo Zoo

On line 4, Java realized there’s only one element in the array and index 1 is not allowed. 
Java threw up its hands in defeat and threw an exception. It didn’t try to handle the exception. 
It just said, “I can’t deal with it” and the exception was displayed:

ZooException in thread "main" 

java.lang.ArrayIndexOutOfBoundsException: 1

at mainmethod.Zoo.main(Zoo.java:7)

Exceptions can and do occur all the time, even in solid program code. In our example, 
toddlers falling is a fact of life. When you write more advanced programs, you’ll need to 
deal with failures in accessing fi les, networks, and outside services. On the OCA exam, 
exceptions deal largely with mistakes in programs. For example, a program might try to 
access an invalid position in an array. The key point to remember is that exceptions alter 
the program fl ow.

Return Codes vs. Exceptions

Exceptions are used when “something goes wrong.” However, the word “wrong” is 

subjective. The following code returns –1 instead of throwing an exception if no match is 

found:

public int indexOf(String[] names, String name) {

  for (int i = 0; i < names.length; i++) {

    if (names[i].equals(name)) { return i; }

  }

  return -1;

}

continues



302 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 302

This approach is common when writing a method that does a search. For example, 

imagine being asked to fi nd the name Joe in the array. It is perfectly reasonable that 

Joe might not appear in the array. When this happens, a special value is returned. An 

exception should be reserved for exceptional conditions like names being null.

In general, try to avoid return codes. Return codes are commonly used in searches, so 

programmers are expecting them. In other methods, you will take your callers by surprise 

by returning a special value. An exception forces the program to deal with them or end 

with the exception if left unhandled, whereas a return code could be accidentally ignored 

and cause problems later in the program. An exception is like shouting, “Deal with me!”

Understanding Exception Types
As we’ve explained, an exception is an event that alters program fl ow. Java has a Throwable 
superclass for all objects that represent these events. Not all of them have the word excep-
tion in their classname, which can be confusing. Figure 6.1 shows the key subclasses of 
Throwable. 

F I GU R E 6 .1   Categories of exception

java.lang.Object

java.lang.Throwable

java.lang.Exception

java.lang.RuntimeException

java.lang.Error

Error means something went so horribly wrong that your program should not attempt to 
recover from it. For example, the disk drive “disappeared.” These are abnormal conditions 
that you aren’t likely to encounter.

A runtime exception is defi ned as the RuntimeException class and its subclasses. Runtime 
exceptions tend to be unexpected but not necessarily fatal. For example, accessing an invalid 
array index is unexpected. Runtime exceptions are also known as unchecked exceptions. 

continued



Understanding Exceptions 303

c06.indd 1½  4/2014 Page 303

Runtime vs. at the Time the Program is Run 

A runtime (unchecked) exception is a specifi c type of exception. All exceptions occur at the 

time that the program is run. (The alternative is compile time, which would be a compiler 

error.) People don’t refer to them as run time exceptions because that would be too easy to 

confuse with runtime! When you see runtime, it means unchecked.

A checked exception includes Exception and all subclasses that do not extend 
RuntimeException. Checked exceptions tend to be more anticipated—for example, trying 
to read a fi le that doesn’t exist. 

Checked exceptions? What are we checking? Java has a rule called the handle or declare 
rule. For checked exceptions, Java requires the code to either handle them or declare them 
in the method signature.

For example, this method declares that it might throw an exception:

void fall() throws Exception {

  throw new Exception();

}

Notice that you’re using two different keywords here. throw tells Java that you want to 
throw an Exception. throws simply declares that the method might throw an Exception. It 
also might not. You will see the throws keyword more later in the chapter.

Because checked exceptions tend to be anticipated, Java enforces that the programmer do 
something to show the exception was thought about. Maybe it was handled in the method. 
Or maybe the method declares that it can’t handle the exception and someone else should.

An example of a runtime exception is a NullPointerException, which happens when 
you try to call a member on a null reference. This can occur in any method. If you had to 
declare runtime exceptions everywhere, every single method would have that clutter!

Checked vs. Unchecked (Runtime) Exceptions

In the past, developers used checked exceptions more often than they do now. Accord-

ing to Oracle, they are intended for issues a programmer “might reasonably be expected 

to recover from.” Then developers started writing code where a chain of methods kept 

declaring the same exception and nobody actually handled it. Some libraries started 

using runtime exceptions for issues a programmer might reasonably be expected to 

recover from. Many programmers can hold a debate with you on which approach is bet-

ter. For the OCA exam, you need to know the rules for how checked versus unchecked 

exceptions function. You don’t have to decide philosophically whether an exception 

should be checked or unchecked.



304 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 304

Throwing an Exception
Any Java code can throw an exception; this includes code you write. For the OCP exam, 
you’ll learn how to create your own exception classes. The OCA exam is limited to 
exceptions that someone else has created. Most likely, they will be exceptions that are 
provided with Java. You might encounter an exception that was made up for the exam. 
This is fi ne. The question will make it obvious that these are exceptions by having the 
classname end with exception. For example, “MyMadeUpException” is clearly an 
exception.

On the exam, you will see two types of code that result in an exception. The fi rst is code 
that’s wrong. For example:

String[] animals = new String[0];

System.out.println(animals[0]);

This code throws an ArrayIndexOutOfBoundsException. That means questions about 
exceptions can be hidden in questions that appear to be about something else.

On the OCA exam, the vast majority of questions have a choice about 
not compiling and about throwing an exception. Pay special attention to 
code that calls a method on a null or that references an invalid array or 
ArrayList index. If you spot this, you know the correct answer is that the 
code throws an exception.

The second way for code to result in an exception is to explicitly request Java to throw 
one. Java lets you write statements like these:

throw new Exception();

throw new Exception("Ow! I fell.");

throw new RuntimeException();

throw new RuntimeException("Ow! I fell.");

The throw keyword tells Java you want some other part of the code to deal with the 
exception. This is the same as the young girl crying for her daddy. Someone else needs to 
fi gure out what to do about the exception.

When creating an exception, you can usually pass a String parameter with a message or 
you can pass no parameters and use the defaults. We say usually because this is a conven-
tion. Someone could create an exception class that does not have a constructor that takes 
a message. The fi rst two examples create a new object of type Exception and throw it. 
The last two show that the code looks the same regardless of which type of exception you 
throw.



c06.indd 1½  4/2014 Page 305

Using a try Statement 305

These rules are very important. Be sure to closely study everything in Table 6.1.

TA B LE 6 .1   Types of exceptions

Type How to recognize
Okay for program 
to catch?

Is program required 
to handle or declare?

Runtime exception Subclass of 
RuntimeException

Yes No

Checked exception Subclass of Exception 
but not subclass of 
RuntimeException

Yes Yes

Error Subclass of Error No No

Using a try Statement

Now that you know what exceptions are, let’s explore how to handle them. Java uses a try 
statement to separate the logic that might throw an exception from the logic to handle that 
exception. Figure 6.2 shows the syntax of a try statement.

F I GU R E 6 . 2   The syntax of a try statement

try {
             //The try block is also referred to
             //as protected code
} catch ( exception_type identifier ) {
             //exception handler
}

The try keyword If an exception is thrown in a try
statement, the catch clauses
attempt to catch it.

The identifier refers to
the caught exception
object.

The type of exception
you are trying to catch

The catch keyword

Curly braces are
required.



306 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 306

The code in the try block is run normally. If any of the statements throw an exception 
that can be caught by the exception type listed in the catch block, the try block stops run-
ning and execution goes to the catch statement. If none of the statements in the try block 
throw an exception that can be caught, the catch clause is not run.

You probably noticed the words “block” and “clause” used interchangeably. The 
exam does this as well, so we are getting you used to it. Both are correct. “Block” is 
correct because there are braces present. “Clause” is correct because they are part of a 
try statement.

There aren’t a ton of syntax rules here. The curly braces are required for the try and 
catch blocks.

In our example, the little girl gets up by herself the fi rst time she falls. Here’s what this 
looks like:

3: void explore() {

4:   try {

5:    fall();

6:    System.out.println("never get here");

7:   } catch (RuntimeException e) {

8:     getUp();

9:   }

10:  seeAnimals();

11: }

12: void fall() {  throw new RuntimeException(); }

First, line 5 calls the fall() method. Line 12 throws an exception. This means Java 
jumps straight to the catch block, skipping line 6. The girl gets up on line 8. Now the try 
statement is over and execution proceeds normally with line 10.

Now let’s look at some invalid try statements that the exam might try to trick you with. 
Do you see what’s wrong with this one?

try  // DOES NOT COMPILE

  fall();

catch (Exception e) 

  System.out.println("get up");

The problem is that the braces are missing. It needs to look like this:

try {

  fall();

} catch (Exception e) {

  System.out.println("get up");

}



c06.indd 1½  4/2014 Page 307

Using a try Statement 307

try statements are like methods in that the curly braces are required even if there is only 
one statement inside the code blocks. if statements and loops are special in this respect as 
they allow you to omit the curly braces.

What about this one?

try {// DOES NOT COMPILE

  fall();

} 

This code doesn’t compile because the try block doesn’t have anything after it. 
Remember, the point of a try statement is for something to happen if an exception is 
thrown. Without another clause, the try statement is lonely.

Now that you know the basics, let’s start adding more features to exceptions. The follow-
ing sections show you how to add a finally clause to a try statement and catch different 
types of exceptions and describe what happens if an exception is thrown in catch or finally.

Adding a finally Block
The try statement also lets you run code at the end with a fi nally clause regardless of 
whether an exception is thrown. Figure 6.3 shows the syntax of a try statement with this 
extra functionality.

F I GU R E 6 . 3   The syntax of a try statement with finally

try {
             //protected code
} catch ( exceptiontype identifier ) {
             //exception handler
} finally {
            //finally block
}

A finally block can
only appear as part
of a try statement.

The finally block
always executes,
whether or not an
exception occurs
in the try block.

The finally keyword

There are two paths through code with both a catch and a finally. If an exception 
is thrown, the finally block is run after the catch block. If no exception is thrown, the 
finally block is run after the try block completes.



308 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 308

Let’s go back to our young girl example, this time with finally:

12: void explore() {

13:   try {

14:     seeAnimals();

15:     fall();

16:   } catch (Exception e) {

17:     getHugFromDaddy();

18:   } finally {

19:     seeMoreAnimals();

20:   }

21:   goHome();

22: }

The girl falls on line 15. If she gets up by herself, the code goes on to the finally block 
and runs line 19. Then the try statement is over and the code proceeds on line 21. If the 
girl doesn’t get up by herself, she throws an exception. The catch block runs and she gets a 
hug on line 17. Then the try statement is over and the code proceeds on line 21. Either way, 
the ending is the same. The finally block is executed and the try statement ends.

On the OCA exam, a try statement must have catch and/or finally. 
Having both is fine. Having neither is a problem. On the OCP exam, you’ll 
learn about a special syntax for a try statement called try-with-resources 
that allows neither a catch nor a finally block. On the OCA exam, you get 
to assume a try statement is just a regular try statement and not a try-
with-resources statement. 

The exam will try to trick you with missing clauses or clauses in the wrong order. Do 
you see why the following do or do not compile?

25: try { // DOES NOT COMPILE

26:   fall();

27: } finally {

28:   System.out.println("all better");

29: } catch (Exception e) {

30:   System.out.println("get up");

31: }

32:

33: try { // DOES NOT COMPILE

34:   fall();

35: }

36:  

37: try {



c06.indd 1½  4/2014 Page 309

Using a try Statement 309

38:   fall();

39: } finally {

40:   System.out.println("all better");

41: }

The fi rst example (lines 25–31) does not compile because the catch and finally blocks 
are in the wrong order. The second example (lines 33–35) does not compile because there 
must be a catch or finally block. The third example (lines 37–41) is just fi ne. catch is not 
required if finally is present.

One problem with finally is that any realistic uses for it are out of the scope of the 
OCA exam. finally is typically used to close resources such as fi les or databases—both of 
which are topics on the OCP exam. This means most of the examples you encounter on the 
OCA exam with finally are going to look contrived. For example, you’ll get asked ques-
tions such as what this code outputs:

String s = "";

try {

  s += "t";

} catch(Exception e) {

  s += "c";

} finally {

  s += "f";

}

s += "a";

System.out.print(s);

The answer is tfa. The try block is executed. Since no exception is thrown, Java goes 
straight to the finally block. Then the code after the try statement is run. We know; this 
is a silly example. Expect to see examples like this on the OCA exam.

System.exit

There is one exception to “the finally block always runs after the catch block” rule: 

Java defi nes a method that you call as System.exit(0);. The integer parameter is the 

error code that gets returned. System.exit tells Java, “Stop. End the program right now. 

Do not pass go. Do not collect $200.” When System.exit is called in the try or catch 

block, finally does not run.

Catching Various Types of Exceptions
So far, you have been catching only one type of exception. Now let’s see what happens 
when different types of exceptions can be thrown from the same method. 



310 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 310

Creating your own exceptions is not on the OCA exam, but it is on the OCP exam. 
However, the OCA exam can defi ne basic exceptions to show you the hierarchy. You only 
need to do two things with this information. First, you must be able to recognize if the 
exception is a checked or an unchecked exception. Second, you need to determine if any of 
the exceptions are subclasses of the others.

class AnimalsOutForAWalk extends RuntimeException { }

class ExhibitClosed extends RuntimeException { }

class ExhibitClosedForLunch extends ExhibitClosed { }

In this example, there are three custom exceptions. All are unchecked exceptions 
because they directly or indirectly extend RuntimeException. Now we catch both types of 
exceptions and handle them by printing out the appropriate message: 

public void visitPorcupine() {

  try {

    seeAnimal();

  } catch (AnimalsOutForAWalk e) {// first catch block

    System.out.print("try back later");

  } catch (ExhibitClosed e) {// second catch block

    System.out.print("not today");

  }

}

There are three possibilities for when this code is run. If seeAnimal() doesn’t throw an 
exception, nothing is printed out. If the animal is out for a walk, only the fi rst catch block 
runs. If the exhibit is closed, only the second catch block runs.

A rule exists for the order of the catch blocks. Java looks at them in the order they 
appear. If it is impossible for one of the catch blocks to be executed, a compiler error 
about unreachable code occurs. This happens when a superclass is caught before a subclass. 
Remember, we warned you to pay attention to any subclass exceptions.

In the porcupine example, the order of the catch blocks could be reversed because the 
exceptions don’t inherit from each other. And yes, we have seen a porcupine be taken for a 
walk on a leash.

The following example shows exception types that do inherit from each other: 

public void visitMonkeys() {

  try {

    seeAnimal();

  } catch (ExhibitClosedForLunch e) {// subclass exception

    System.out.print("try back later");

  } catch (ExhibitClosed e) {// superclass exception

    System.out.print("not today");

  }

}



c06.indd 1½  4/2014 Page 311

Using a try Statement 311

If the more specifi c ExhibitClosedForLunch exception is thrown, the fi rst catch 
block runs. If not, Java checks if the superclass ExhibitClosed exception is thrown 
and catches it. This time, the order of the catch blocks does matter. The reverse does 
not work.

public void visitMonkeys() {

  try {

    seeAnimal();

  } catch (ExhibitClosed e) {

    System.out.print("not today");

  } catch (ExhibitClosedForLunch e) {// DOES NOT COMPILE

    System.out.print("try back later");

  } 

}

This time, if the more specifi c ExhibitClosedForLunch exception is thrown, the catch 
block for ExhibitClosed runs—which means there is no way for the second catch block to 
ever run. Java correctly tells us there is an unreachable catch block.

Let’s try this one more time. Do you see why this code doesn’t compile?

public void visitSnakes() {

  try {

    seeAnimal();

  } catch (RuntimeException e) {

    System.out.print("runtime exception");

  } catch (ExhibitClosed e) {// DOES NOT COMPILE

    System.out.print("not today");

  } catch (Exception e) {

    System.out.print("exception");

  }

}

It’s the same problem. ExhibitClosed is a RuntimeException. If it is thrown, the fi rst 
catch block takes care of it, making sure there no way to get to the second catch block.

To review catching multiple exceptions, remember that at most one catch block will run 
and it will be the fi rst catch block that can handle it.

Throwing a Second Exception
So far, we’ve limited ourselves to one try statement in each example. However, 
a catch or finally block can have any valid Java code in it—including another 
try statement.



312 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 312

Even though the topic of reading files is on the OCP exam, the OCA exam 
may ask you about exception handling with those classes. This is actually a 
gift. When you see such a question, you know the problem has to be about 
basic Java syntax or exception handling!

The following code tries to read a fi le:

16: public static void main(String[] args) {

17:   FileReader reader = null;

18:   try {

19:     reader = read();

20:   } catch (IOException e) {

21:     try {

22:      if (reader != null)  reader.close();

23:     } catch (IOException inner) {

24:     }

25:   }

26: }

27: private static FileReader read() throws IOException {

28:   // CODE GOES HERE

29: }

The easiest case is if line 28 doesn’t throw an exception. Then the entire catch block on 
lines 20–25 is skipped. Next, consider if line 28 throws a NullPointerException. That isn’t 
an IOException, so the catch block on lines 20–25 will still be skipped.

If line 28 does throw an IOException, the catch block on lines 20–25 does get run. Line 
22 tries to close the reader. If that goes well, the code completes and the main() method 
ends normally. If the close() method does throw an exception, Java looks for more catch 
blocks. There aren’t any, so the main method throws that new exception. Regardless, the 
exception on line 28 is handled. A different exception might be thrown, but the one from 
line 28 is done.

Most of the examples you see with exception handling on the exam are abstract. They 
use letters or numbers to make sure you understand the fl ow. This one shows that only the 
last exception to be thrown matters. (This is true for the OCA exam. It will change a bit on 
the OCP exam.)

26: try {

27:   throw new RuntimeException();

28: } catch (RuntimeException e) {

29:   throw new RuntimeException();

30: } finally {

31:   throw new Exception();

32: }

Line 27 throws an exception, which is caught on line 28. The catch block then throws 
an exception on line 29. If there were no finally block, the exception from line 29 would 



Recognizing Common Exception Types 313

c06.indd 1½  4/2014 Page 313

be thrown. However, the finally block runs after the try block. Since the finally block 
throws an exception of its own on line 31, this one gets thrown. The exception from the 
catch block gets forgotten about. This is why you often see another try/catch inside a 
finally block—to make sure it doesn’t mask the exception from the catch block.

Next we are going to show you the hardest example you can be asked related to 
exceptions. What do you think this method returns? Go slowly. It’s tricky.

30: public String exceptions() {

31:   String result = "";

32:   String v = null;

33:   try {

34:      try {

35:        result += "before";

36:        v.length();

37:        result += "after";

38:      } catch (NullPointerException e) {

39:       result += "catch";

40:       throw new RuntimeException();

41:      } finally {

42:       result += "finally";

43:       throw new Exception();

44:      }

45:   } catch (Exception e) {

46:     result += "done";

47:   }

48:   return result;

49: }

The correct answer is before catch finally done. Everything is normal up until line 
35, when "before" is added. Line 36 throws a NullPointerException. Line 37 is skipped 
as Java goes straight to the catch block. Line 38 does catch the exception, and "catch" is 
added on line 39. Then line 40 throws a RuntimeException. The finally block runs after 
the catch regardless of whether an exception is thrown; it adds "finally" to result. At this 
point, we have completed the inner try statement that ran on lines 34–44. The outer catch 
block then sees an exception was thrown and catches it on line 45; it adds "done" to result.

Recognizing Common Exception Types

You need to recognize three types of exceptions for the OCA exam: runtime exceptions, 
checked exceptions, and errors. We’ll look at common examples of each type. For the 
exam, you’ll need to recognize which type of an exception it is and whether it’s thrown by 
the JVM or a programmer. So you can recognize them, we’ll show you some code examples 
for those exceptions.



314 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 314

Runtime Exceptions
Runtime exceptions extend RuntimeException. They don’t have to be handled or declared. 
They can be thrown by the programmer or by the JVM. Common runtime exceptions 
include the following:

ArithmeticException   Thrown by the JVM when code attempts to divide by zero

ArrayIndexOutOfBoundsException  Thrown by the JVM when code uses an illegal 
index to access an array

ClassCastException  Thrown by the JVM when an attempt is made to cast an excep-
tion to a subclass of which it is not an instance

IllegalArgumentException  Thrown by the programmer to indicate that a method has 
been passed an illegal or inappropriate argument

NullPointerException  Thrown by the JVM when there is a null reference where an 
object is required

NumberFormatException  Thrown by the programmer when an attempt is made to con-
vert a string to a numeric type but the string doesn’t have an appropriate format

ArithmeticException
Trying to divide an int by zero gives an undefi ned result. When this occurs, the JVM will 
throw an ArithmeticException:

int answer = 11 / 0;

Running this code results in the following output:

Exception in thread "main" java.lang.ArithmeticException: / by zero

Java doesn’t spell out the word “divide.” That’s okay, though, because we know that / is 
the division operator and that Java is trying to tell us division by zero occurred.

The thread "main" is telling us the code was called directly or indirectly from a program 
with a main method. On the OCA exam, this is all the output we will see. Next comes the 
name of the exception, followed by extra information (if any) that goes with the exception.

ArrayIndexOutOfBoundsException
You know by now that array indexes start with 0 and go up to 1 less than the length of the 
array—which means this code will throw an ArrayIndexOutOfBoundsException:

int[] countsOfMoose = new int[3];

System.out.println(countsOfMoose[-1]); 

This is a problem because there’s no such thing as a negative array index. Running this 
code yields the following output:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: -1

At least Java tells us what index was invalid. Can you see what’s wrong with this one?



Recognizing Common Exception Types 315

c06.indd 1½  4/2014 Page 315

int total = 0;

int[] countsOfMoose = new int[3];

for (int i = 0; i <= countsOfMoose.length; i++) 

  total += countsOfMoose[i]; 

The problem is that the for loop should have < instead of <=. On the fi nal iteration of 
the loop, Java tries to call countsOfMoose[3], which is invalid. The array includes only 
three elements, making 2 the largest possible index. The output looks like this:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3

ClassCastException
Java tries to protect you from impossible casts. This code doesn’t compile because Integer 
is not a subclass of String:

String type = "moose";

Integer number = (Integer) type;  // DOES NOT COMPILE

More complicated code thwarts Java’s attempts to protect you. When the cast fails at 
runtime, Java will throw a ClassCastException:

String type = "moose";

Object obj = type;

Integer number = (Integer) obj; 

The compiler sees a cast from Object to Integer. This could be okay. The compiler 
doesn’t realize there’s a String in that Object. When the code runs, it yields the following 
output:

Exception in thread "main" java.lang.ClassCastException: java.lang.String 

cannot be cast to java.lang.Integer

Java tells us both types that were involved in the problem, making it apparent what’s 
wrong.

IllegalArgumentException
IllegalArgumentException is a way for your program to protect itself. We fi rst saw the 
following setter method in the Swan class in Chapter 4, “Methods and Encapsulation.”

6:  public void setNumberEggs(int numberEggs) {// setter

7:    if (numberEggs >= 0) // guard condition

8:      this.numberEggs = numberEggs;

9:  }

This code works, but we don’t really want to ignore the caller’s request when they tell 
us a Swan has –2 eggs. We want to tell the caller that something is wrong—preferably in a 
very obvious way that the caller can’t ignore so that the programmer will fi x the problem. 
Exceptions are an effi cient way to do this. Seeing the code end with an exception is a great 
reminder that something is wrong:



316 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 316

public static void setNumberEggs(int numberEggs) {

  if (numberEggs < 0) 

    throw new IllegalArgumentException(

        "# eggs must not be negative");

  this.numberEggs = numberEggs;

}

The program throws an exception when it’s not happy with the parameter values. The 
output looks like this:

Exception in thread "main" java.lang.IllegalArgumentException: # eggs must not 
be negative

Clearly this is a problem that must be fi xed if the programmer wants the program to do 
anything useful.

NullPointerException
Instance variables and methods must be called on a non-null reference. If the reference is 
null, the JVM will throw a NullPointerException. It’s usually subtle, such as this exam-
ple, which checks whether you remember instance variable references default to null.

String name;

public void printLength() throws NullPointerException {

  System.out.println(name.length());

}

Running this code results in this output:

Exception in thread "main" java.lang.NullPointerException

NumberFormatException
Java provides methods to convert strings to numbers. When these are passed 
an invalid value, they throw a NumberFormatException. The idea is similar to 
IllegalArgumentException. Since this is a common problem, Java gives it a separate class. 
In fact, NumberFormatException is a subclass of IllegalArgumentException. Here’s an 
example of trying to convert something non-numeric into an int:

Integer.parseInt("abc");

The output looks like this:

Exception in thread "main" java.lang.NumberFormatException: For input string: 
"abc"



Recognizing Common Exception Types 317

c06.indd 1½  4/2014 Page 317

Checked Exceptions
Checked exceptions have Exception in their hierarchy but not RuntimeException. They 
must be handled or declared. They can be thrown by the programmer or by the JVM. 
Common runtime exceptions include the following:

FileNotFoundException  Thrown programmatically when code tries to reference a fi le 
that does not exist

IOException  Thrown programmatically when there’s a problem reading or writing a fi le

For the OCA exam, you only need to know that these are checked exceptions. Also keep 
in mind that FileNotFoundException is a subclass of IOException, although the exam will 
remind you of that fact if it comes up. You’ll see these two exceptions in more detail on the 
OCP exam.

Errors
Errors extend the Error class. They are thrown by the JVM and should not be handled or 
declared. Errors are rare, but you might see these:

ExceptionInInitializerError  Thrown by the JVM when a static initializer throws 
an exception and doesn’t handle it

StackOverflowError  Thrown by the JVM when a method calls itself too many times 
(this is called infi nite recursion because the method typically calls itself without end)

NoClassDefFoundError  Thrown by the JVM when a class that the code uses is available 
at compile time but not runtime

ExceptionInInitializerError
Java runs static initializers the fi rst time a class is used. If one of the static initializers 
throws an exception, Java can’t start using the class. It declares defeat by throwing an 
ExceptionInInitializerError. This code shows an ArrayIndexOutOfBounds in a static 
initializer:

static {

  int[] countsOfMoose = new int[3];

  int num = countsOfMoose[-1];

}

public static void main(String[] args) { }



318 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 318

This code yields information about two exceptions:

Exception in thread "main" java.lang.ExceptionInInitializerError

Caused by: java.lang.ArrayIndexOutOfBoundsException: -1

We get the ExceptionInInitializerError because the error happened in a static initial-
izer. That information alone wouldn’t be particularly useful in fi xing the problem. Therefore, 
Java also tells us the original cause of the problem: the ArrayIndexOutOfBoundsException that 
we need to fi x.

The ExceptionInInitializerError is an error because Java failed to load the whole 
class. This failure prevents Java from continuing.

StackOverflowError
When Java calls methods, it puts parameters and local variables on the stack. After doing 
this a very large number of times, the stack runs out of room and overfl ows. This is called a 
StackOverflowError. Most of the time, this error occurs when a method calls itself.

public static void doNotCodeThis(int num) {

  doNotCodeThis(1);

}

The output contains this line:

Exception in thread "main" java.lang.StackOverflowError

Since the method calls itself, it will never end. Eventually, Java runs out of room on the 
stack and throws the error. This is called infi nite recursion. It is better than an infi nite loop 
because at least Java will catch it and throw the error. With an infi nite loop, Java just uses 
all your CPU until you can kill it.

NoClassDefFoundError
This error won’t show up in code on the exam—you just need to know that it is an error. 
NoClassDefFoundError occurs when Java can’t fi nd the class at runtime.

Calling Methods That Throw Exceptions

When you’re calling a method that throws an exception, the rules are the same as within a 
method. Do you see why the following doesn’t compile?

class NoMoreCarrotsException extends Exception {}

public class Bunny {

  public static void main(String[] args) {

    eatCarrot();// DOES NOT COMPILE

  }

  private static void eatCarrot() throws NoMoreCarrotsException {

  }

}



Calling Methods That Throw Exceptions 319

c06.indd 1½  4/2014 Page 319

The problem is that NoMoreCarrotsException is a checked exception. Checked excep-
tions must be handled or declared. The code would compile if we changed the main() 
method to either of these:

public static void main(String[] args) 

  throws NoMoreCarrotsException {// declare exception

  eatCarrot();

}

public static void main(String[] args) {

  try {

    eatCarrot();

  } catch (NoMoreCarrotsException e ) {// handle exception

    System.out.print("sad rabbit");

  }

}

You might have noticed that eatCarrot() didn’t actually throw an exception; it just 
declared that it could. This is enough for the compiler to require the caller to handle or 
declare the exception.

The compiler is still on the lookout for unreachable code. Declaring an unused exception 
isn’t considered unreachable code. It gives the method the option to change the implementa-
tion to throw that exception in the future. Do you see the issue here?

public void bad() {

  try {

    eatCarrot();

  } catch (NoMoreCarrotsException e ) {// DOES NOT COMPILE

    System.out.print("sad rabbit");

  }

}

public void good() throws NoMoreCarrotsException {

  eatCarrot();

}

private static void eatCarrot() { }

Java knows that eatCarrot() can’t throw a checked exception—which means there’s no 
way for the catch block in bad() to be reached. In comparison, good() is free to declare 
other exceptions.

Subclasses
Now that you have a deeper understanding of exceptions, let’s look at overriding meth-
ods with exceptions in the method declaration. When a class overrides a method from a 



320 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 320

superclass or implements a method from an interface, it’s not allowed to add new checked 
exceptions to the method signature. For example, this code isn’t allowed:

class CanNotHopException extends Exception { }

class Hopper {

  public void hop() { }

}

class Bunny extends Hopper {

  public void hop() throws CanNotHopException { } // DOES NOT COMPILE

}

Java knows hop() isn’t allowed to throw any checked exceptions because the superclass 
Hopper doesn’t declare any. Imagine what would happen if subclasses could add checked 
exceptions—you could write code that calls Hopper’s hop() method and not handle any 
exceptions. Then if Bunny was used in its place, the code wouldn’t know to handle or 
declare CanNotHopException.

A subclass is allowed to declare fewer exceptions than the superclass or interface. This is 
legal because callers are already handling them.

class Hopper {

  public void hop() throws CanNotHopException { }

}

class Bunny extends Hopper {

  public void hop()  { }

}

A subclass not declaring an exception is similar to a method declaring it throws an 
exception that it never actually throws. This is perfectly legal.

Similarly, a class is allowed to declare a subclass of an exception type. The idea is the 
same. The superclass or interface has already taken care of a broader type. Here’s an 
example:

class Hopper {

  public void hop() throws Exception { }

}

class Bunny extends Hopper {

  public void hop() throws CanNotHopException { }

}

Bunny could declare that it throws Exception directly, or it could declare that it throws a 
more specifi c type of Exception. It could even declare that it throws nothing at all.

This rule applies only to checked exceptions. The following code is legal because it has a 
runtime exception in the subclass’s version:

class Hopper {

  public void hop() { }

}



Calling Methods That Throw Exceptions 321

c06.indd 1½  4/2014 Page 321

class Bunny extends Hopper {

  public void hop() throws IllegalStateException { }

}

The reason that it’s okay to declare new runtime exceptions in a subclass method is that 
the declaration is redundant. Methods are free to throw any runtime exceptions they want 
without mentioning them in the method declaration.

Printing an Exception
There are three ways to print an exception. You can let Java print it out, print just the mes-
sage, or print where the stack trace comes from. This example shows all three approaches:

5: public static void main(String[] args) {

6:    try {

7:     hop();

8:    } catch (Exception e) {

9:      System.out.println(e);

10:     System.out.println(e.getMessage());

11:     e.printStackTrace();

12:   }

13: }

14: private static void hop() {

15:   throw new RuntimeException("cannot hop");

16: }

This code results in the following output:

java.lang.RuntimeException: cannot hop

cannot hop

java.lang.RuntimeException: cannot hop

at trycatch.Handling.hop(Handling.java:15)

at trycatch.Handling.main(Handling.java:7)

The fi rst line shows what Java prints out by default: the exception type and message. The 
second line shows just the message. The rest shows a stack trace.

The stack trace is usually the most helpful one because it shows where the exception 
occurred in each method that it passed through. On the OCA exam, you will mostly see the 
fi rst approach. This is because the exam often shows code snippets.

The stack trace shows all the methods on the stack. Figure 6.4 shows what the stack 
looks like for this code. Every time you call a method, Java adds it to the stack until it com-
pletes. When an exception is thrown, it goes through the stack until it fi nds a method that 
can handle it or it runs out of stack.



322 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 322

F I GU R E 6 . 4   A method stack

new RuntimeException()

hop()

main()

Why Swallowing Exception Is Bad

Because checked exceptions require you to handle or declare them, there is a temptation 

to catch them so they “go away.” But doing so can cause problems. In the following code, 

there’s a problem reading in the fi le:

public static void main(String[] args) {

  String textInFile = null;

  try {

    readInFile();

  } catch (IOException e) {

     // ignore exception

  }

  // imagine many lines of code here

  System.out.println(textInFile.replace(" ", ""));

}

private static void readInFile() throws IOException {

  throw new IOException();

}

The code results in a NullPointerException. Java doesn’t tell you anything about the 

original IOException because it was handled. Granted, it was handled poorly, but it was 

handled.

When writing your own code, print out a stack trace or at least a message when catching 

an exception. Also, consider whether continuing is the best course of action. In our exam-

ple, the program can’t do anything after it fails to read in the fi le. It might as well have just 

thrown the IOException.



Summary 323

c06.indd 1½  4/2014 Page 323

Summary

An exception indicates something unexpected happened. A method can handle an excep-
tion by catching it or declaring it for the caller to deal with. Many exceptions are thrown 
by Java libraries. You can throw your own exception with code such as throw new 
Exception().

Subclasses of java.lang.Error are exceptions that a programmer should not attempt to 
handle. Subclasses of java.lang.RuntimeException are runtime (unchecked) exceptions. 
Subclasses of java.lang.Exception, but not java.lang.RuntimeException are checked 
exceptions. Java requires checked exceptions to be handled or declared.

If a try statement has multiple catch blocks, at most one catch block can run. Java 
looks for an exception that can be caught by each catch block in the order they appear, and 
the fi rst match is run. Then execution continues after the try statement. If both catch and 
finally throw an exception, the one from finally gets thrown.

Common runtime exceptions include:

 ■ ArithmeticException

 ■ ArrayIndexOutOfBoundsException

 ■ ClassCastException

 ■ IllegalArgumentException

 ■ NullPointerException

 ■ NumberFormatException

IllegalArgumentException and NumberFormatException are typically thrown by the 
programmer, whereas the others are typically thrown by the JVM.

Common checked exceptions include:

 ■ IOException

 ■ FileNotFoundException

Common errors include:

 ■ ExceptionInInitializerError

 ■ StackOverflowError

 ■ NoClassDefFoundError

When a method overrides a method in a superclass or interface, it is not allowed to add 
checked exceptions. It is allowed to declare fewer exceptions or declare a subclass of a 
declared exception. Methods declare exceptions with the keyword throws.



324 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 324

Exam Essentials

Differentiate between checked and unchecked exceptions.  Unchecked exceptions are also 
known as runtime exceptions and are subclasses of java.lang.RuntimeException. All 
other subclasses of java.lang.Exception are checked exceptions.

Understand the flow of a try statement.  A try statement must have a catch or a finally 
block. Multiple catch blocks are also allowed, provided no superclass exception type 
appears in an earlier catch block than its subclass. The finally block runs last regardless 
of whether an exception is thrown.

Identify whether an exception is thrown by the programmer or the JVM.  Illegal
ArgumentException and NumberFormatException are commonly thrown by the program-
mer. Most of the other runtime exceptions are typically thrown by the JVM.

Declare methods that declare exceptions.  The throws keyword is used in a method decla-
ration to indicate an exception might be thrown. When overriding a method, the method is 
allowed to throw fewer exceptions than the original version.

Recognize when to use throw versus throws.  The throw keyword is used when you actu-
ally want to throw an exception—for example, throw new RuntimeException(). The 
throws keyword is used in a method declaration.



Review Questions 325

c06.indd 1½  4/2014 Page 325

Review Questions

1. Which of the following statements are true? (Choose all that apply)

A. Runtime exceptions are the same thing as checked exceptions.

B. Runtime exceptions are the same thing as unchecked exceptions.

C. You can declare only checked exceptions.

D. You can declare only unchecked exceptions.

E. You can handle only Exception subclasses.

2. Which of the following pairs fill in the blanks to make this code compile? (Choose all that 
apply)
7: public void ohNo() _____ Exception {

8:   _____________ Exception();

9: }

A. On line 7, fill in throw

B. On line 7, fill in throws

C. On line 8, fill in throw

D. On line 8, fill in throw new

E. On line 8, fill in throws

F. On line 8, fill in throws new

3. When are you required to use a finally block in a regular try statement (not a try-with-
resources)?

A. Never.

B. When the program code doesn’t terminate on its own.

C. When there are no catch blocks in a try statement.

D. When there is exactly one catch block in a try statement.

E. When there are two or more catch blocks in a try statement.

4. Which exception will the following throw?
Object obj = new Integer(3);

String str = (String) obj;

System.out.println(str);

A. ArrayIndexOutOfBoundsException

B. ClassCastException

C. IllegalArgumentException

D. NumberFormatException

E. None of the above.



326 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 326

5. Which of the following exceptions are thrown by the JVM? (Choose all that apply)

A. ArrayIndexOutOfBoundsException

B. ExceptionInInitializerError

C. java.io.IOException

D. NullPointerException

E. NumberFormatException

6. What will happen if you add the statement System.out.println(5 / 0); to a working 
main() method?

A. It will not compile.

B. It will not run.

C. It will run and throw an ArithmeticException.

D. It will run and throw an IllegalArgumentException.

E. None of the above.

7. What is printed besides the stack trace caused by the NullPointerException from line 16? 
1: public class DoSomething {

2:   public void go() {

3:     System.out.print("A");

4:     try {

5:         stop();

6:     } catch (ArithmeticException e) {

7:         System.out.print("B");

8:     } finally {

9:         System.out.print("C");

10:    }

11:    System.out.print("D");

12:  }

13:  public void stop() {

14:    System.out.print("E");

15:    Object x = null;

16:    x.toString();

17:    System.out.print("F");

18:  }

19:  public static void main(String[] args) {

20:    new DoSomething().go();

21:  }

22: }

A. AE

B. AEBCD



Review Questions 327

c06.indd 1½  4/2014 Page 327

C. AEC

D. AECD

E. No output appears other than the stack trace.

8. What is the output of the following snippet, assuming a and b are both 0?
3:     try {

4:       return a / b;

5:     } catch (RuntimeException e) {

6:       return -1;

7:     } catch (ArithmeticException e) {

8:       return 0;

9:     } finally {

10:      System.out.print("done");

11:    } 

A. -1

B. 0

C. done-1

D. done0

E. The code does not compile.

F. An uncaught exception is thrown.

9. What is the output of the following program?
1: public class Laptop {

2:   public void start() {

3:    try {

4:      System.out.print("Starting up ");

5:      throw new Exception();

6:    } catch (Exception e) {

7:       System.out.print("Problem ");

8:       System.exit(0);

9:    } finally {

10:      System.out.print("Shutting down ");

11:   } 

12:  }

13:  public static void main(String[] args) {

14:    new Laptop().start();

15:  } }

A. Starting up

B. Starting up Problem

C. Starting up Problem Shutting down



328 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 328

D. Starting up Shutting down

E. The code does not compile.

F. An uncaught exception is thrown.

10. What is the output of the following program?
1:  public class Dog {

2:    public String name;

3:    public void parseName() {

4:      System.out.print("1");

5:      try {

6:        System.out.print("2");

7:        int x = Integer.parseInt(name);

8:        System.out.print("3");

9:      } catch (NumberFormatException e) {

10:       System.out.print("4");

11:     }

12:   }

13:   public static void main(String[] args) {

14:     Dog leroy = new Dog();

15:     leroy.name = "Leroy";

16:     leroy.parseName();

17:     System.out.print("5");

18:   } }

A. 12

B. 1234

C. 1235

D. 124

E. 1245

F. The code does not compile.

G. An uncaught exception is thrown.

11. What is the output of the following program?
1:  public class Cat {

2:    public String name;

3:    public void parseName() {

4:      System.out.print("1");

5:      try {

6:        System.out.print("2");

7:        int x = Integer.parseInt(name);

8:        System.out.print("3");



Review Questions 329

c06.indd 1½  4/2014 Page 329

9:      } catch (NullPointerException e) {

10:       System.out.print("4");

11:     }

12:     System.out.print("5");

13:   }

14:   public static void main(String[] args) {

15:     Cat leo = new Cat();

16:     leo.name = "Leo";

17:     leo.parseName();

18:     System.out.print("6");

19:   }

20: }

A. 12, followed by a stack trace for a NumberFormatException

B. 124, followed by a stack trace for a NumberFormatException

C. 12456

D. 12456

E. 1256, followed by a stack trace for a NumberFormatException

F. The code does not compile.

G. An uncaught exception is thrown.

12. What is printed by the following? (Choose all that apply)
1:  public class Mouse {

2:    public String name;

3:    public void run() {

4:      System.out.print("1");

5:      try {

6:        System.out.print("2");

7:        name.toString();

8:        System.out.print("3");

9:      } catch (NullPointerException e) {

10:       System.out.print("4");

11:       throw e;

12:     }

13:     System.out.print("5");

14:   }

15:   public static void main(String[] args) {

16:     Mouse jerry = new Mouse();

17:     jerry.run();

18:     System.out.print("6");

19:   } }



330 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 330

A. 1

B. 2

C. 3

D. 4

E. 5

F. 6

G. The stack trace for a NullPointerException

13. Which of the following statements are true? (Choose all that apply)

A. You can declare a method with Exception as the return type.

B. You can declare any subclass of Error in the throws part of a method declaration.

C. You can declare any subclass of Exception in the throws part of a method 
declaration.

D. You can declare any subclass of Object in the throws part of a method declaration.

E. You can declare any subclass of RuntimeException in the throws part of a method 
declaration.

14. Which of the following can be inserted on line 8 to make this code compile? (Choose all 
that apply)
7: public void ohNo() throws IOException {

8:   // INSERT CODE HERE

9: }

A. System.out.println("it's ok");

B. throw new Exception();

C. throw new IllegalArgumentException();

D. throw new java.io.IOException();

E. throw new RuntimeException();

15. Which of the following are unchecked exceptions? (Choose all that apply)

A. ArrayIndexOutOfBoundsException

B. IllegalArgumentException

C. IOException

D. NumberFormatException

E. Any exception that extends RuntimeException

F. Any exception that extends Exception

16. Which scenario is the best use of an exception?

A. An element is not found when searching a list.

B. An unexpected parameter is passed into a method.



Review Questions 331

c06.indd 1½  4/2014 Page 331

C. The computer caught fire.

D. You want to loop through a list.

E. You don’t know how to code a method.

17. Which of the following can be inserted into Lion to make this code compile? (Choose all 
that apply)

class HasSoreThroatException extends Exception {}

class TiredException extends RuntimeException {}

interface Roar {

  void roar() throws HasSoreThroatException;

}

class Lion implements Roar {// INSERT CODE HERE

}

A. public void roar(){} 

B. public void roar() throws Exception{} 

C. public void roar() throws HasSoreThroatException{} 

D. public void roar() throws IllegalArgumentException{} 

E. public void roar() throws TiredException{} 

18. Which of the following are true? (Choose all that apply)

A. Checked exceptions are allowed to be handled or declared.

B. Checked exceptions are required to be handled or declared.

C. Errors are allowed to be handled or declared.

D. Errors are required to be handled or declared.

E. Runtime exceptions are allowed to be handled or declared.

F. Runtime exceptions are required to be handled or declared.

19. Which of the following can be inserted in the blank to make the code compile? (Choose all 
that apply)
public static void main(String[] args) {

  try {

    System.out.println("work real hard");

  } catch (  e) {

  } catch (RuntimeException e) {

  }

}

A. Exception

B. IOException

C. IllegalArgumentException

D. RuntimeException



332 Chapter 6 ■ Exceptions

c06.indd 1½  4/2014 Page 332

E. StackOverflowError

F. None of the above.

20. What does the output of the following contain? (Choose all that apply)
12: public static void main(String[] args) {

13:   System.out.print("a");

14:   try {

15:     System.out.print("b");

16:     throw new IllegalArgumentException();

17:   } catch (IllegalArgumentException e) {

18:     System.out.print("c");

19:     throw new RuntimeException("1");

20:   } catch (RuntimeException e) {

21:     System.out.print("d");

22:     throw new RuntimeException("2");

23:   } finally {

24:     System.out.print("e");

25:     throw new RuntimeException("3");

26:   }

27: }

A. abce

B. abde

C. An exception with the message set to "1"

D. An exception with the message set to "2"

E. An exception with the message set to "3" 

F. Nothing; the code does not compile. 



bapp01.indd 1½  4/2014 Page 333

Answers to Review 
Questions

Appendix 

A



334 Appendix A ■ Answers to Review Questions

bapp01.indd 1½  4/2014 Page 334

Chapter 1: Java Building Blocks

1. A, B, E. Option A is valid because you can use the dollar sign in identifiers. Option B is 
valid because you can use an underscore in identifiers. Option C is not a valid identifier 
because true is a Java reserved word. Option D is not valid because the dot (.) is not 
allowed in identifiers. Option E is valid because Java is case sensitive, so Public is not 
a reserved word and therefore a valid identifier. Option F is not valid because the first 
character is not a letter, $, or _.

2. D. Boolean fields initialize to false and references initialize to null, so empty is false 
and brand is null. Brand = null is output. 

3. B, D, E. Option A (line 4) compiles because short is an integral type. Option B (line 
5) generates a compiler error because int is an integral type, but 5.6 is a floating-point 
type. Option C (line 6) compiles because it is assigned a String. Options D and E (lines 
7 and 8) do not compile because short and int are primitives. Primitives do not allow 
methods to be called on them. Option F (line 9) compiles because length() is defined 
on String.

4. A, B. Adding the variable at line 2 makes result an instance variable. Since instance 
variables are in scope for the entire life of the object, option A is correct. Option B is 
correct because adding the variable at line 4 makes result a local variable with a scope 
of the whole method. Adding the variable at line 6 makes result a local variable with 
a scope of lines 6–7. Since it is out of scope on line 8, the println does not compile and 
option C is incorrect. Adding the variable at line 9 makes result a local variable with 
a scope of lines 9 and 10. Since line 8 is before the declaration, it does not compile and 
option D is incorrect. Finally, option E is incorrect because the code can be made to 
compile.

5. C, D. Option C is correct because it imports Jelly by classname. Option D is cor-
rect because it imports all the classes in the jellies package, which includes Jelly. 
Option A is incorrect because it only imports classes in the aquarium package—Tank 
in this case—and not those in lower-level packages. Option B is incorrect because you 
cannot use wildcards anyplace other than the end of an import statement. Option E is 
incorrect because you cannot import parts of a class with a regular import statement. 
Option F is incorrect because options C and D do make the code compile.

6. E. The first two imports can be removed because java.lang is automatically imported. 
The second two imports can be removed because Tank and Water are in the same pack-
age, making the correct answer E. If Tank and Water were in different packages, one of 
these two imports could be removed. In that case, the answer would be option D. 

7. A, B, C. Option A is correct because it imports all the classes in the aquarium package 
including aquarium.Water. Options B and C are correct because they import Water by 
classname. Since importing by classname takes precedence over wildcards, these com-
pile. Option D is incorrect because Java doesn’t know which of the two wildcard Water 



Chapter 1: Java Building Blocks 335

bapp01.indd 1½  4/2014 Page 335

classes to use. Option E is incorrect because you cannot specify the same classname in 
two imports. 

8. B. Option B is correct because arrays start counting from zero and strings with spaces 
must be in quotes. Option A is incorrect because it outputs Blue. C is incorrect because 
it outputs Jay. Option D is incorrect because it outputs Sparrow. Options E and F are 
incorrect because they output Error: Could not find or load main class Bird-
Display.class.

9. A, C, D, E. Option A is correct because it is the traditional main() method signature 
and variables may begin with underscores. Options C and D are correct because the 
array operator may appear after the variable name. Option E is correct because 
varargs are allowed in place of an array. Option B is incorrect because variables are 
not allowed to begin with a digit. Option F is incorrect because the argument must be 
an array or varargs. Option F is a perfectly good method. However, it is not one that 
can be run from the command line because it has the wrong parameter type. 

10. E. Option E is the canonical main() method signature. You need to memorize it. 
Option A is incorrect because the main() method must be public. Options B and F 
are incorrect because the main() method must have a void return type. Option C is 
incorrect because the main() method must be static. Option D is incorrect because the 
main() method must be named main. 

11. C, D. Option C is correct because all non-primitive values default to null. Option D is 
correct because float and double primitives default to 0.0. Options B and E are incor-
rect because int primitives default to 0.

12. G. Option G is correct because local variables do not get assigned default values. The 
code fails to compile if a local variable is not explicitly initialized. If this question 
were about instance variables, options D and F would be correct. A boolean primitive 
defaults to false and a float primitive defaults to 0.0.

13. A, D. Options A and D are correct because boolean primitives default to false and 
int primitives default to 0. 

14. D. The package name represents any folders underneath the current path, which is 
named.A in this case. Option B is incorrect because package names are case sensitive, 
just like variable names and other identifiers.

15. A, E. Underscores are allowed as long as they are directly between two other digits. 
This means options A and E are correct. Options B and C are incorrect because the 
underscore is adjacent to the decimal point. Option D is incorrect because the under-
score is the last character. 

16. B, C, D. 0b is the prefix for a binary value and is correct. 0x is the prefix for a hexa-
decimal value. This value can be assigned to many primitive types, including int and 
double, making options C and D correct. Option A is incorrect because 9L is a long 
value. long amount = 9L would be allowed. Option E is incorrect because the under-
score is immediately before the decimal. Option F is incorrect because the underscore is 
the very last character.



336 Appendix A ■ Answers to Review Questions

bapp01.indd 1½  4/2014 Page 336

17. A, E. Bunny is a class, which can be seen from the declaration: public class Bunny. bun 
is a reference to an object. main() is a method.

18. C, D, E. package and import are both optional. If both are present, the order must 
be package, then import, then class. Option A is incorrect because class is before 
package and import. Option B is incorrect because import is before package. Option 
F is incorrect because class is before package. Option G is incorrect because class is 
before import.

19. B, D. The Rabbit object from line 3 has two references to it: one and three. The ref-
erences are nulled out on lines 6 and 8, respectively. Option B is correct because this 
makes the object eligible for garbage collection after line 8. Line 7 sets the reference 
four to the now null one, which means it has no effect on garbage collection. The Rab-
bit object from line 4 only has a single reference to it: two. Option D is correct because 
this single reference becomes null on line 9. The Rabbit object declared on line 10 
becomes eligible for garbage collection at the end of the method on line 12. Calling 
System.gc() has no effect on eligibility for garbage collection.

20. B, E. Calling System.gc() suggests that Java might wish to run the garbage collector. 
Java is free to ignore the request, making option E correct. finalize() runs if an object 
attempts to be garbage collected, making option B correct.

21. A. While the code on line 3 does compile, it is not a constructor because it has a return 
type. It is a method that happens to have the same name as the class. When the code 
runs, the default constructor is called and count has the default value (0) for an int.

22. B, E. C++ has operator overloading and pointers. Java made a point of not having 
either. Java does have references to objects, but these are pointing to an object that can 
move around in memory. Option B is correct because Java is platform independent. 
Option E is correct because Java is object oriented. While it does support some parts of 
functional programming, these occur within a class.

23. C, D. Java puts source code in .java files and bytecode in .class files. It does not use 
a .bytecode file. When running a Java program, you pass just the name of the class 
without the .class extension.

Chapter 2: Operators and Statements

1. A, D. Option A is the equality operator and can be used on numeric primitives, bool-
ean values, and object references. Options B and C are both arithmetic operators and 
cannot be applied to a boolean value. Option D is the logical complement operator 
and is used exclusively with boolean values. Option E is the modulus operator, which 
can only be used with numeric primitives. Finally, option F is a relational operator that 
compares the values of two numbers.



Chapter 2: Operators and Statements 337

bapp01.indd 1½  4/2014 Page 337

2. A, B, D. The value x + y is automatically promoted to int, so int and data types that 
can be promoted automatically from int will work. Options A, B, D are such data 
types. Option C will not work because boolean is not a numeric data type. Options E 
and F will not work without an explicit cast to a smaller data type.

3. F. In this example, the ternary operator has two expressions, one of them a String and 
the other a boolean value. The ternary operator is permitted to have expressions that 
don’t have matching types, but the key here is the assignment to the String reference. 
The compiler knows how to assign the first expression value as a String, but the sec-
ond boolean expression cannot be set as a String; therefore, this line will not compile.

4. B, C, D, F. The code will not compile as is, so option A is not correct. The value 2 * x 
is automatically promoted to long and cannot be automatically stored in y, which is 
in an int value. Options B, C, and D solve this problem by reducing the long value to 
int. Option E does not solve the problem and actually makes it worse by attempting 
to place the value in a smaller data type. Option F solves the problem by increasing the 
data type of the assignment so that long is allowed.

5. C. This code does not contain any compilation errors or an infinite loop, so options D, 
E, and F are incorrect. The break statement on line 8 causes the loop to execute once 
and finish, so option C is the correct answer.

6. F. The code does not compile because two else statements cannot be chained together 
without additional if-then statements, so the correct answer is option F. Option E is 
incorrect as Line 6 by itself does not cause a problem, only when it is paired with Line 
7. One way to fix this code so it compiles would be to add an if-then statement on 
line 6. The other solution would be to remove line 7.

7. D. As you learned in the section “Ternary Operator,” although parentheses are not 
required, they do greatly increase code readability, such as the following equivalent 
statement:
System.out.println((x > 2) ? ((x < 4) ? 10 : 8) : 7)

We apply the outside ternary operator fi rst, as it is possible the inner ternary expression 
may never be evaluated. Since (x>2) is true, this reduces the problem to:
System.out.println((x < 4) ? 10 : 8)

Since x is greater than 2, the answer is 8, or option D in this case.

8. B. This example is tricky because of the second assignment operator embedded in line 
5. The expression (z=false) assigns the value false to z and returns false for the 
entire expression. Since y does not equal 10, the left-hand side returns true; therefore, 
the exclusive or (̂ ) of the entire expression assigned to x is true. The output reflects 
these assignments, with no change to y, so option B is the only correct answer. The 
code compiles and runs without issue, so option F is not correct.

9. F. In this example, the update statement of the for loop is missing, which is fine as the 
statement is optional, so option D is incorrect. The expression inside the loop incre-
ments i but then assigns i the old value. Therefore, i ends the loop with the same value 



338 Appendix A ■ Answers to Review Questions

bapp01.indd 1½  4/2014 Page 338

that it starts with: 0. The loop will repeat infinitely, outputting the same statement over 
and over again because i remains 0 after every iteration of the loop.

10. D. Line 4 generates a possible loss of precision compiler error. The cast operator has 
the highest precedence, so it is evaluated first, casting a to a byte. Then, the addition is 
evaluated, causing both a and b to be promoted to int values. The value 90 is an int 
and cannot be assigned to the byte sum without an explicit cast, so the code does not 
compile. The code could be corrected with parentheses around (a + b), in which case 
option C would be the correct answer.

11. A. The * and % have the same operator precedence, so the expression is evaluated 
from left-to-right. The result of 5 * 4 is 20, and 20 % 3 is 2 (20 divided by 3 is 18, the 
remainder is 2). The output is 2 and option A is the correct answer.

12. D. The variable x is an int and s is a reference to a String object. The two data types 
are incomparable because neither variable can be converted to the other variable’s type. 
The compiler error occurs on line 5 when the comparison is attempted, so the answer 
is option D.

13. A. The code compiles successfully, so options C and D are incorrect. The value of b 
after line 4 is false. However, the if-then statement on line 5 contains an assignment, 
not a comparison. The variable b is assigned true on line 3, and the assignment opera-
tor returns true, so line 5 executes and displays Success, so the answer is option A.

14. C. The code compiles successfully, so option F is incorrect. On line 5, the pre-incre-
ment operator is used, so c is incremented to 4 and the new value is returned to the 
expression. The value of result is computed by adding 4 to the original value of 8, 
resulting in a new value of 12, which is output on line 6. Therefore, option C is the 
correct answer.

15. E. This is actually a much simpler problem than it appears to be. The while statement 
on line 4 is missing parentheses, so the code will not compile, and option E is the cor-
rect answer. If the parentheses were added, though, option F would be the correct 
answer since the loop does not use curly braces to include x++ and the boolean expres-
sion never changes. Finally, if curly braces were added around both expressions, the 
output would be 10, 6 and option B would be correct.

16. D. The variable y is declared within the body of the do-while statement, so it is out of 
scope on line 6. Line 6 generates a compiler error, so option D is the correct answer.

17. D. The code compiles without issue, so option F is incorrect. After the first execu-
tion of the loop, i is decremented to 9 and result to 13. Since i is not 8, keepGoing is 
false, and the loop continues. On the next iteration, i is decremented to 8 and result 
to 11. On the second execution, i does equal 8, so keepGoing is set to false. At the 
conclusion of the loop, the loop terminates since keepGoing is no longer true. The 
value of result is 11, and the correct answer is option D.

18. A. The expression on line 5 is true when row * col is an even number. On the first 
iteration, row = 1 and col = 1, so the expression on line 6 is false, the continue is 
skipped, and count is incremented to 1. On the second iteration, row = 1 and 



Chapter 3: Core Java APIs 339

bapp01.indd 1½  4/2014 Page 339

col = 2, so the expression on line 6 is true and the continue ends the outer loop with 
count still at 1. On the third iteration, row = 2 and col = 1, so the expression on line 
6 is true and the continue ends the outer loop with count still at 1. On the fourth 
iteration, row = 3 and col = 1, so the expression on line 6 is false, the continue is 
skipped, and count is incremented to 2. Finally, on the fifth and final iteration, row 
= 3 and col = 2, so the expression on line 6 is true and the continue ends the outer 
loop with count still at 2. The result of 2 is displayed, so the answer is option B.

19. D. Prior to the first iteration, m = 9, n = 1, and x = 0. After the iteration of the first 
loop, m is updated to 8, n to 3, and x to the sum of the new values for m + n, 0 + 11 = 
11. After the iteration of the second loop, m is updated to 7, n to 5, and x to the sum 
of the new values for m + n, 11 + 12 = 23. After the iteration of the third loop, m is 
updated to 6, n to 7, and x to the sum of the new values for m + n, 23 + 13 = 36. On 
the fourth iteration of the loop, m > n evaluates to false, as 6 < 7 is not true. The 
loop ends and the most recent value of x, 36, is output, so the correct answer is option 
D.

20. B. The code compiles and runs without issue, so options C, D, and E are not correct. The 
value of grade is 'B' and there is a matching case statement that will cause "great" to 
be printed. There is no break statement after the case, though, so the next case state-
ment will be reached, and "good" will be printed. There is a break after this case state-
ment, though, so the switch statement will end. The correct answer is thus option B.

Chapter 3: Core Java APIs

1. G. Line 5 does not compile. This question is checking to see if you are paying attention 
to the types. numFish is an int and 1 is an int. Therefore, we use numeric addition and 
get 5. The problem is that we can’t store an int in a String variable. Supposing line 5 
said String anotherFish = numFish + 1 + "";. In that case, the answer would be 
options A and D. The variable defined on line 5 would be the string "5", and both out-
put statements would use concatenation.

2. A, C, D. The code compiles fine. Line 3 points to the String in the string pool. Line 4 
calls the String constructor explicitly and is therefore a different object than s. Lines 5 
and 7 check for object equality, which is true, and so print one and three. Line 6 uses 
object reference equality, which is not true since we have different objects. Line 7 also 
compares references but is true since both references point to the object from the string 
pool. Finally, line 8 compares one object from the string pool with one that was explic-
itly constructed and returns false.

3. B, C, E. Immutable means the state of an object cannot change once it is created. 
Immutable objects can be garbage collected just like mutable objects. String is immu-
table. StringBuilder can be mutated with methods like append(). Although 



340 Appendix A ■ Answers to Review Questions

bapp01.indd 1½  4/2014 Page 340

StringBuffer isn’t on the exam, you should know about it anyway in case older ques-
tions haven’t been removed.

4. B. This example uses method chaining. After the call to append(), sb contains "aaa". 
That result is passed to the first insert() call, which inserts at index 1. At this point 
sb contains abbbaa. That result is passed to the final insert(), which inserts at index 
4, resulting in abbaccca.

5. F. The question is trying to distract you into paying attention to logical equality versus 
object reference equality. It is hoping you will miss the fact that line 4 does not com-
pile. Java does not allow you to compare String and StringBuilder using ==.

6. B. A String is immutable. Calling concat() returns a new String but does not change 
the original. A StringBuilder is mutable. Calling append() adds characters to the 
existing character sequence along with returning a reference to the same object. 

7. B, D, E. length() is simply a count of the number of characters in a String. In this 
case, there are six characters. charAt() returns the character at that index. Remember 
that indexes are zero based, which means that index 3 corresponds to d and index 6 
corresponds to 1 past the end of the array. A StringIndexOutOfBoundsException is 
thrown for the last line.

8. A, D, E. substring() has two forms. The first takes the index to start with and the 
index to stop immediately before. The second takes just the index to start with and 
goes to the end of the String. Remember that indexes are zero based. The first call 
starts at index 1 and ends with index 2 since it needs to stop before index 3. The sec-
ond call starts at index 7 and ends in the same place, resulting in an empty String. 
This prints out a blank line. The final call starts at index 7 and goes to the end of the 
String.

9. C. This question is trying to see if you know that String objects are immutable. Line 
4 returns "PURR" but the result is ignored and not stored in s. Line 5 returns "purr" 
since there is no whitespace present but the result is again ignored. Line 6 returns "ur" 
because it starts with index 1 and ends before index 3 using zero-based indexes. The 
result is ignored again. Finally, on line 6 something happens. We concatenate four new 
characters to s and now have a String of length 8.

10. F. a += 2 expands to a = a + 2. A String concatenated with any other type gives 
a String. Lines 14, 15, and 16 all append to a, giving a result of "2cfalse". The if 
statement on line 18 returns false because the values of the two String objects are the 
same using object equality. The if statement on line 17 returns false because the two 
String objects are not the same in memory. One comes directly from the string pool 
and the other comes from building using String operations.

11. E. Line 6 adds 1 to total because substring() includes the starting index but not 
the ending index. Line 7 adds 0 to total. Line 8 is a problem: Java does not allow the 
indexes to be specified in reverse order and the code throws a StringIndexOutOf-
BoundsException.



Chapter 3: Core Java APIs 341

bapp01.indd 1½  4/2014 Page 341

12. A. First, we delete the characters at index 2 until the character one before index 8. At 
this point, 0189 is in numbers. The following line uses method chaining. It appends a 
dash to the end of the characters sequence, resulting in 0189–, and then inserts a plus 
sign at index 2, resulting in 01+89–.

13. F. This is a trick question. The first line does not compile because you cannot 
assign a String to a StringBuilder. If that line were StringBuilder b = new 
StringBuilder("rumble"), the code would compile and print rum4. Watch out for this 
sort of trick on the exam. You could easily spend a minute working out the character 
positions for no reason at all.

14. A, C. The reverse() method is the easiest way of reversing the characters in a String-
Builder; therefore, option A is correct. Option B is a nice distraction—it does in fact 
return "avaJ". However, substring() returns a String, which is not stored anywhere. 
Option C uses method chaining. First it creates the value "JavavaJ$". Then it removes 
the first three characters, resulting in "avaJ$". Finally, it removes the last character, 
resulting in "avaJ". Option D throws an exception because you cannot delete the char-
acter after the last index. Remember that deleteCharAt() uses indexes that are zero 
based and length() counts starting with 1.

15. C, E, F. Option C uses the variable name as if it were a type, which is clearly illegal. 
Options E and F don’t specify any size. Although it is legal to leave out the size for later 
dimensions of a multidimensional array, the first one is required. Option A declares a 
legal 2D array. Option B declares a legal 3D array. Option D declares a legal 2D array. 
Remember that it is normal to see on the exam types you might not have learned. You 
aren’t expected to know anything about them.

16. C. Arrays define a property called length. It is not a method, so parentheses are not 
allowed.

17. F. The ArrayList class defines a method called size().

18. A, C, D, E. An array is not able to change size and can have multiple dimensions. Both 
an array and ArrayList are ordered and have indexes. Neither is immutable. The ele-
ments can change in value.

19. B, C. An array does not override equals() and so uses object equality. ArrayList does 
override equals() and defines it as the same elements in the same order. The compiler 
does not know when an index is out of bounds and thus can’t give you a compiler 
error. The code will throw an exception at runtime, though.

20. D. The code does not compile because list is instantiated using generics. Only String 
objects can be added to list and 7 is an int.

21. C. After line 4, values has one element (4). After line 5, values has two elements (4, 
5). After line 6, values has two elements (4, 6) because set() does a replace. After line 
7, values has only one element (6).

22. D. The code compiles and runs fine. However, an array must be sorted for binarySe-
arch() to return a meaningful result.



342 Appendix A ■ Answers to Review Questions

bapp01.indd 1½  4/2014 Page 342

23. A. Line 4 creates a fixed size array of size 4. Line 5 sorts it. Line 6 converts it back to 
an array. The brackets aren’t in the traditional place, but they are still legal. Line 7 
prints the first element, which is now –1.

24. C. Converting from an array to an ArrayList uses Arrays.asList(names). There is 
no asList() method on an array instance. If this code were corrected to compile, the 
answer would be option A.

25. D. After sorting, hex contains [30, 3A, 8, FF]. Remember that numbers sort before 
letters and strings sort alphabetically. This makes 30 come before 8. A binary search 
correctly finds 8 at index 2 and 3A at index 1. It cannot find 4F but notices it should 
be at index 2. The rule when an item isn’t found is to negate that index and subtract 1. 
Therefore, we get –2–1, which is –3.

26. A, B, D. Lines 5 and 7 use autoboxing to convert an int to an Integer. Line 6 does 
not because valueOf() returns an Integer. Line 8 does not because null is not an int. 
The code does not compile. However, when the for loop tries to unbox null into an 
int, it fails and throws a NullPointerException.

27. B. The first if statement is false because the variables do not point to the same object. 
The second if statement is true because ArrayList implements equality to mean the 
same elements in the same order.

28. D, F. Options A and B are incorrect because LocalDate does not have a public con-
structor. Option C is incorrect because months start counting with 1 rather than 0. 
Option E is incorrect because it uses the old pre–Java 8 way of counting months, again 
beginning with 0. Options D and F are both correct ways of specifying the desired 
date.

29. D. A LocalDate does not have a time element. Therefore, it has no method to add 
hours and the code does not compile.

30. F. Java throws an exception if invalid date values are passed. There is no 40th day in 
April—or any other month for that matter.

31. B. The date starts out as April 30, 2018. Since dates are immutable and the plus meth-
ods have their return values ignored, the result is unchanged. Therefore, option B is 
correct.

32. E. Even though d has both date and time, the formatter only outputs time.

33. B. Period does not allow chaining. Only the last Period method called counts, so only 
the two years are subtracted.

Chapter 4: Methods and Encapsulation

1. B, C. void is a return type. Only the access modifier or optional specifiers are allowed 
before the return type. Option C is correct, creating a method with private access. 
Option B is correct, creating a method with default access and the optional specifier 
final. Since default access does not require a modifier, we get to jump right to final. 



Chapter 4: Methods and Encapsulation 343

bapp01.indd 1½  4/2014 Page 343

Option A is incorrect because default access omits the access modifier rather than spec-
ifying default. Option D is incorrect because Java is case sensitive. It would have been 
correct if public were the choice. Option E is incorrect because the method already has 
a void return type. Option F is incorrect because labels are not allowed for methods.

2. A, D. Options A and D are correct because the optional specifiers are allowed in any 
order. Options B and C are incorrect because they each have two return types. Options 
E and F are incorrect because the return type is before the optional specifier and access 
modifier, respectively.

3. A, C, D. Options A and C are correct because a void method is allowed to have a 
return statement as long as it doesn’t try to return a value. Options B and G do not 
compile because null requires a reference object as the return type. void is not a refer-
ence object since it is a marker for no return type. int is not a reference object since it 
is a primitive. Option D is correct because it returns an int value. Option E does not 
compile because it tries to return a double when the return type is int. Since a double 
cannot be assigned to an int, it cannot be returned as one either. Option F does not 
compile because no value is actually returned.

4. A, B, G. Options A and B are correct because the single vararg parameter is the last 
parameter declared. Option G is correct because it doesn’t use any vararg parameters 
at all. Options C and F are incorrect because the vararg parameter is not last. Option 
D is incorrect because two vararg parameters are not allowed in the same method. 
Option E is incorrect because the ... for a vararg must be after the type, not before it.

5. D, G. Option D passes the initial parameter plus two more to turn into a vararg array 
of size 2. Option G passes the initial parameter plus an array of size 2. Option A does 
not compile because it does not pass the initial parameter. Options E and F do not 
compile because they do not declare an array properly. It should be new boolean[] 
{true}. Option B creates a vararg array of size 0 and option C creates a vararg array of 
size 1.

6. D. Option D is correct. This is the common implementation for encapsulation by set-
ting all fields to be private and all methods to be public. Option A is incorrect because 
protected access allows everything that package private access allows and additionally 
allows subclasses access. Option B is incorrect because the class is public. This means 
that other classes can see the class. However, they cannot call any of the methods or 
read any of the fields. It is essentially a useless class. Option C is incorrect because 
package private access applies to the whole package. Option E is incorrect because Java 
has no such capability.

7. B, C, D, F. The two classes are in different packages, which means private access and 
default (package private) access will not compile. Additionally, protected access will 
not compile since School does not inherit from Classroom. Therefore, only line 8 will 
compile because it uses public access.

8. B, C, E. Encapsulation requires using methods to get and set instance variables so 
other classes are not directly using them. Instance variables must be private for this 
to work. Immutability takes this a step further, allowing only getters, so the instance 
variables do not change state.



344 Appendix A ■ Answers to Review Questions

bapp01.indd 1½  4/2014 Page 344

9. C, E. Option A is incorrect because the property is of type boolean and getters must 
begin with is for booleans. Options B and D are incorrect because they don’t follow 
the naming convention of beginning with get/is/set. Options C and E follow normal 
getter and setter conventions. 

10. B. Rope runs line 3, setting LENGTH to 5, then immediately after runs the static initial-
izer, which sets it to 10. Line 5 calls the static method normally and prints swing. 
Line 6 also calls the static method. Java allows calling a static method through an 
instance variable. Line 7 uses the static import on line 2 to reference LENGTH.

11. B, E. Line 10 does not compile because static methods are not allowed to call instance 
methods. Even though we are calling play() as if it were an instance method and an 
instance exists, Java knows play() is really a static method and treats it as such. If line 
10 is removed, the code works. It does not throw a NullPointerException on line 16 
because play() is a static method. Java looks at the type of the reference for rope2 and 
translates the call to Rope.play().

12. D. There are two details to notice in this code. First, note that RopeSwing has an 
instance initializer and not a static initializer. Since RopeSwing is never constructed, 
the instance initializer does not run. The other detail is that length is static. Changes 
from one object update this common static variable.

13. E. static final variables must be set exactly once, and it must be in the declaration 
line or in a static initialization block. Line 4 doesn’t compile because bench is not set 
in either of these locations. Line 15 doesn’t compile because final variables are not 
allowed to be set after that point. Line 11 doesn’t compile because name is set twice: 
once in the declaration and again in the static block. Line 12 doesn’t compile because 
rightRope is set twice as well. Both are in static initialization blocks.

14. B. The two valid ways to do this are import static java.util.Collections.*; and 
import static java.util.Collections.sort;. Option A is incorrect because you 
can only do a static import on static members. Classes such as Collections require 
a regular import. Option C is nonsense as method parameters have no business in 
an import. Options D, E, and F try to trick you into reversing the syntax of import 
static.

15. E. The argument on line 17 is a short. It can be promoted to an int, so print() on 
line 5 is invoked. The argument on line 18 is a boolean. It can be autoboxed to a bool-
ean, so print() on line 11 is invoked. The argument on line 19 is a double. It can 
be autoboxed to a double, so print() on line 11 is invoked. Therefore, the output is 
intObjectObject and the correct answer is option E. 

16. B. Since Java is pass-by-value and the variable on line 8 never gets reassigned, it stays 
as 9. In the method square, x starts as 9. y becomes 81 and then x gets set to –1. Line 9 
does set result to 81. However, we are printing out value and that is still 9.

17. B, D, E. Since Java is pass-by-reference, assigning a new object to a does not change the 
caller. Calling append() does affect the caller because both the method parameter and 



Chapter 4: Methods and Encapsulation 345

bapp01.indd 1½  4/2014 Page 345

caller have a reference to the same object. Finally, returning a value does pass the refer-
ence to the caller for assignment to s3.

18. C, G. Since the main() method is in the same class, it can call private methods in the 
class. this() may only be called as the first line of a constructor. this.variableName 
can be called from any instance method to refer to an instance variable. It cannot be 
called from a static method because there is no instance of the class to refer to. Option 
F is tricky. The default constructor is only written by the compiler if no user-defined 
constructors were provided. this() can only be called from a constructor in the same 
class. Since there can be no user-defined constructors in the class if a default construc-
tor was created, it is impossible for option F to be true. 

19. A, G. Options B and C don’t compile because the constructor name must match the 
classname. Since Java is case sensitive, these don’t match. Options D, E, and F all com-
pile and provide one user-defined constructor. Since a constructor is coded, a default 
constructor isn’t supplied. Option G defines a method, but not a constructor. Option A 
does not define a constructor, either. Since no constructor is coded, a default construc-
tor is provided for options A and G.

20. E. Options A and B will not compile because constructors cannot be called without 
new. Options C and D will compile but will create a new object rather than setting the 
fields in this one. Option F will not compile because this() must be the first line of a 
constructor. Option E is correct.

21. C. Within the constructor numSpots refers to the constructor parameter. The instance 
variable is hidden because they have the same name. this.numSpots tells Java to use 
the instance variable. In the main() method, numSpots refers to the instance variable. 
Option A sets the constructor parameter to itself, leaving the instance variable as 0. 
Option B sets the constructor parameter to the value of the instance variable, making 
them both 0. Option C is correct, setting the instance variable to the value of the con-
structor parameter. Options D and E do not compile.

22. E. On line 3 of OrderDriver, we refer to Order for the first time. At this point the stat-
ics in Order get initialized. In this case, the statics are the static declaration of result 
and the static initializer. result is u at this point. On line 4, result is the same 
because the static initialization is only run once. On line 5, we create a new Order, 
which triggers the instance initializers in the order they appear in the file. Now result 
is ucr. Line 6 creates another Order, triggering another set of initializers. Now result 
is ucrcr. Notice how the static is on a different line than the initialization code in 
lines 4–5 of Order. The exam may try to trick you by formatting the code like this to 
confuse you.

23. A. Line 4 instantiates an Order. Java runs the declarations and instance initializers first 
in the order they appear. This sets value to tacf. Line 5 creates another Order and 
initializes value to tacb. The object on line 5 is stored in the same variable line 4 used. 
This makes the object created on line 4 unreachable. When value is printed, it is the 
instance variable in the object created on line 5.



346 Appendix A ■ Answers to Review Questions

bapp01.indd 1½  4/2014 Page 346

24. B, C, E. value1 is a final instance variable. It can only be set once: in the variable dec-
laration, an instance initializer, or a constructor. Option A does not compile because 
the final variable was already set in the declaration. value2 is a static variable. Both 
instance and static initializers are able to access static variables, making options B 
and E correct. value3 is an instance variable. Options D and F do not compile because 
a static initializer does not have access to instance variables. 

25. A, E. The 100 parameter is an int and so calls the matching int constructor. When 
this constructor is removed, Java looks for the next most specific constructor. Java pre-
fers autoboxing to varargs, and so chooses the Integer constructor. The 100L param-
eter is a long. Since it can’t be converted into a smaller type, it is autoboxed into a Long 
and then the constructor for Object is called. 

26. A. This code is correct. Line 8 creates a lambda expression that checks if the age is less 
than 5. Since there is only one parameter and it does not specify a type, the parentheses 
around the type parameter are optional. Line 10 uses the Predicate interface, which 
declares a test() method.

27. C. The interface takes two int parameters. The code on line 7 attempts to use them as 
if one is a StringBuilder. It is tricky to use types in a lambda when they are implicitly 
specified. Remember to check the interface for the real type.

28. A, D, F. removeIf() expects a Predicate, which takes a parameter list of one param-
eter using the specified type. Options B and C are incorrect because they do not use the 
return keyword. It is required inside braces for lambda bodies. Option E is incorrect 
because it is missing the parentheses around the parameter list. This is only optional 
for a single parameter with an inferred type.

29. A, F. Option B is incorrect because it does not use the return keyword. Options C, D, 
and E are incorrect because the variable e is already in use from the lambda and can-
not be redefined. Additionally, option C is missing the return keyword and option E is 
missing the semicolon.

Chapter 5: Class Design

1. B. All interface methods are implicitly public, so option B is correct and option A is 
not. Interface methods may be declared as static or default but are never implicitly 
added, so options C and F are incorrect. Option D is incorrect—void is not a modifier; 
it is a return type. Option E is a tricky one, because prior to Java 8 all interface meth-
ods would be assumed to be abstract. Since Java 8 now includes default and static 
methods and they are never abstract, you cannot assume the abstract modifier will be 
implicitly applied to all methods by the compiler.

2. E. The code will not compile because the parent class Mammal doesn’t define a no-argu-
ment constructor, so the first line of a Platypus constructor should be an explicit call 
to super(int age). If there was such a call, then the output would be MammalPlatypus, 
since the super constructor is executed before the child constructor.



Chapter 5: Class Design 347

bapp01.indd 1½  4/2014 Page 347

3. A, B, D, E. The blank can be filled with any class or interface that is a supertype of 
TurtleFrog. Option A is a superclass of TurtleFrog, and option B is the same class, 
so both are correct. BrazilianHornedFrog is not a superclass of TurtleFrog, so option 
C is incorrect. TurtleFrog inherits the CanHope interface, so option D is correct. All 
classes inherit Object, so option E is correct. Finally, Long is an unrelated class that is 
not a superclass of TurtleFrog, and is therefore incorrect.

4. C, E. The code doesn’t compile, so option A is incorrect. Option B is also not correct 
because the rules for overriding a method allow a subclass to define a method with an 
exception that is a subclass of the exception in the parent method. Option C is cor-
rect because the return types are not covariant; in particular, Number is not a subclass 
of Integer. Option D is incorrect because the subclass defines a method that is more 
accessible than the method in the parent class, which is allowed. Finally, option E is 
correct because the method is declared as static in the parent class and not so in the 
child class. For nonprivate methods in the parent class, both methods must use static 
(hide) or neither should use static (override).

5. A, D, E, F. First off, options B and C are incorrect because protected and public meth-
ods may be overridden, not hidden. Option A is correct because private methods are 
always hidden in a subclass. Option D is also correct because static methods cannot 
be overridden, only hidden. Options E and F are correct because variables may only be 
hidden, regardless of the access modifier.

6. D. The code fails to compile because Beetle, the first concrete subclass, doesn’t imple-
ment getNumberOfSections(), which is inherited as an abstract method; therefore, 
option D is correct. Option B is incorrect because there is nothing wrong with this 
interface method definition. Option C is incorrect because an abstract class is not 
required to implement any abstract methods, including those inherited from an inter-
face. Option E is incorrect because the code fails at compilation-time.

7. B, C. A reference to an object requires an explicit cast if referenced with a subclass, 
so option A is incorrect. If the cast is to a superclass reference, then an explicit cast is 
not required. Because of polymorphic parameters, if a method takes the superclass of 
an object as a parameter, then any subclass references may be used without a cast, so 
option B is correct. All objects extend java.lang.Object, so if a method takes that 
type, any valid object, including null, may be passed; therefore, option C is correct. 
Some cast exceptions can be detected as errors at compile-time, but others can only be 
detected at runtime, so D is incorrect. Due to the nature of polymorphism, a public 
instance method can be overridden in a subclass and calls to it will be replaced even in 
the superclass it was defined, so E is incorrect.

8. F. The interface variable amount is correctly declared, with public and static being 
assumed and automatically inserted by the compiler, so option B is incorrect. The 
method declaration for eatGrass() on line 3 is incorrect because the method has been 
marked as static but no method body has been provided. The method declaration for 
chew() on line 4 is also incorrect, since an interface method that provides a body must 
be marked as default or static explicitly. Therefore, option F is the correct answer 
since this code contains two compile-time errors.



348 Appendix A ■ Answers to Review Questions

bapp01.indd 1½  4/2014 Page 348

9. A. Although the definition of methods on lines 2 and 5 vary, both will be converted to 
public abstract by the compiler. Line 4 is fine, because an interface can have pub-
lic or default access. Finally, the class Falcon doesn’t need to implement the interface 
methods because it is marked as abstract. Therefore, the code will compile without 
issue.

10. B, C, E, F. Option A is wrong, because an abstract class may contain concrete meth-
ods. Since Java 8, interfaces may also contain concrete methods in form of static or 
default methods. Although all variables in interfaces are assumed to be public static 
final, abstract classes may contain them as well, so option B is correct. Both abstract 
classes and interfaces can be extended with the extends keyword, so option C is cor-
rect. Only interfaces can contain default methods, so option D is incorrect. Both 
abstract classes and interfaces can contain static methods, so option E is correct. Both 
structures require a concrete subclass to be instantiated, so option F is correct. Finally, 
though an instance of an object that implements an interface inherits java.lang.
Object, the interface itself doesn’t; otherwise, Java would support multiple inheritance 
for objects, which it doesn’t. Therefore, option G is incorrect.

11. A, D, E. Interface variables are assumed to be public static final; therefore, options 
A, D, and E are correct. Options B and C are incorrect because interface variables must 
be public—interfaces are implemented by classes, not inherited by interfaces. Option F 
is incorrect because variables can never be abstract.

12. B. This code compiles and runs without issue, outputting false, so option B is the 
correct answer. The first declaration of isBlind() is as a default interface method, 
assumed public. The second declaration of isBlind() correctly overrides the default 
interface method. Finally, the newly created Owl instance may be automatically cast to 
a Nocturnal reference without an explicit cast, although adding it doesn’t break the 
code.

13. A. The code compiles and runs without issue, so options E and F are incorrect. The 
printName() method is an overload in Spider, not an override, so both methods may 
be called. The call on line 8 references the version that takes an int as input defined 
in the Spider class, and the call on line 9 references the version in the Arthropod class 
that takes a double. Therefore, SpiderArthropod is output and option A is the correct 
answer.

14. C. The code compiles without issue, so option A is wrong. Option B is incorrect, since 
an abstract class could implement HasVocalCords without the need to override the 
makeSound() method. Option C is correct; any class that implements CanBark auto-
matically inherits its methods, as well as any inherited methods defined in the parent 
interface. Because option C is correct, it follows that option D is incorrect. Finally, an 
interface can extend multiple interfaces, so option E is incorrect.

15. B. Concrete classes are, by definition, not abstract, so option A is incorrect. A concrete 
class must implement all inherited abstract methods, so option B is correct. Option C 
is incorrect; a superclass may have already implemented an inherited interface, so the 
concrete subclass would not need to implement the method. Concrete classes can be 
both final and not final, so option D is incorrect. Finally, abstract methods must be 
overridden by a concrete subclass, so option E is incorrect.



Chapter 6: Exceptions 349

bapp01.indd 1½  4/2014 Page 349

16. E. The code doesn’t compile, so options A and B are incorrect. The issue with line 9 is 
that layEggs() is marked as final in the superclass Reptile, which means it cannot be 
overridden. There are no errors on any other lines, so options C and D are incorrect.

17. B. This may look like a complex question, but it is actually quite easy. Line 2 contains 
an invalid definition of an abstract method. Abstract methods cannot contain a body, 
so the code will not compile and option B is the correct answer. If the body {} was 
removed from line 2, the code would still not compile, although it would be line 8 that 
would throw the compilation error. Since dive() in Whale is abstract and Orca extends 
Whale, then it must implement an overridden version of dive(). The method on line 
9 is an overloaded version of dive(), not an overridden version, so Orca is an invalid 
subclass and will not compile.

18. E. The code doesn’t compile because line 6 contains an incompatible override of the 
getNumberOfGills(int input) method defined in the Aquatic interface. In particular, 
int and String are not covariant returns types, since int is not a subclass of String. 
Note that line 5 compiles without issue; getNumberOfGills() is an overloaded method 
that is not related to the parent interface method that takes an int value.

19. A, C, F. First off, Cobra is a subclass of Snake, so option A can be used. GardenSnake is 
not defined as a subclass of Snake, so it cannot be used and option B is incorrect. The 
class Snake is not marked as abstract, so it can be instantiated and passed, so option 
C is correct. Next, Object is a superclass of Snake, not a subclass, so it also cannot be 
used and option D is incorrect. The class String is unrelated in this example, so option 
E is incorrect. Finally, a null value can always be passed as an object value, regardless 
of type, so option F is correct.

20. A. The code compiles and runs without issue, so options C, D, and E are incorrect. 
The trick here is that the method fly() is marked as private in the parent class Bird, 
which means it may only be hidden, not overridden. With hidden methods, the specific 
method used depends on where it is referenced. Since it is referenced within the Bird 
class, the method declared on line 2 was used, and option A is correct. Alternatively, 
if the method was referenced within the Pelican class, or if the method in the parent 
class was marked as protected and overridden in the subclass, then the method on line 
9 would have been used.

Chapter 6: Exceptions

1. B. Runtime exceptions are also known as unchecked exceptions. They are allowed 
to be declared, but they don’t have to be. Checked exceptions must be handled or 
declared. Legally, you can handle java.lang.Error subclasses, but it’s not a good idea.

2. B, D. In a method declaration, the keyword throws is used. To actually throw an 
exception, the keyword throw is used and a new exception is created.

3. C. A try statement is required to have a catch clause and/or finally clause. If it goes 
the catch route, it is allowed to have multiple catch clauses.



350 Appendix A ■ Answers to Review Questions

bapp01.indd 1½  4/2014 Page 350

4. B. The second line tries to cast an Integer to a String. Since String does not extend 
Integer, this is not allowed and a ClassCastException is thrown.

5. A, B, D. java.io.IOException is thrown by many methods in the java.io package, 
but it is always thrown programmatically. The same is true for NumberFormatExcep-
tion; it is thrown programmatically by the wrapper classes of java.lang. The other 
three exceptions are all thrown by the JVM when the corresponding problem arises.

6. C. The compiler tests the operation for a valid type but not a valid result, so the code 
will still compile and run. At runtime, evaluation of the parameter takes place before 
passing it to the print() method, so an ArithmeticException object is raised.

7. C. The main() method invokes go and A is printed on line 3. The stop method is 
invoked and E is printed on line 14. Line 16 throws a NullPointerException, so stop 
immediately ends and line 17 doesn’t execute. The exception isn’t caught in go, so the 
go method ends as well, but not before its finally block executes and C is printed on 
line 9. Because main() doesn’t catch the exception, the stack trace displays and no fur-
ther output occurs, so AEC was the output printed before the stack trace. 

8. E. The order of catch blocks is important because they’re checked in the order they 
appear after the try block. Because ArithmeticException is a child class of Runtime-
Exception, the catch block on line 7 is unreachable. (If an ArithmeticException is 
thrown in try try block, it will be caught on line 5.) Line 7 generates a compiler error 
because it is unreachable code.

9. B. The main() method invokes start on a new Laptop object. Line 4 prints Starting 
up; then line 5 throws an Exception. Line 6 catches the exception, line 7 prints 
Problem, and then line 8 calls System.exit, which terminates the JVM. The finally 
block does not execute because the JVM is no longer running.

10. E. The parseName method is invoked within main() on a new Dog object. Line 4 prints 
1. The try block executes and 2 is printed. Line 7 throws a NumberFormatException, so 
line 8 doesn’t execute. The exception is caught on line 9, and line 10 prints 4. Because the 
exception is handled, execution resumes normally. parseName runs to completion, and 
line 17 executes, printing 5. That’s the end of the program, so the output is 1245.

11. A. The parseName method is invoked on a new Cat object. Line 4 prints 1. The try 
block is entered, and line 6 prints 2. Line 7 throws a NumberFormatException. It isn’t 
caught, so parseName ends. main() doesn’t catch the exception either, so the program 
terminates and the stack trace for the NumberFormatException is printed.

12. A, B, D, G. The main() method invokes run on a new Mouse object. Line 4 prints 1 and 
line 6 prints 2, so options A and B are correct. Line 7 throws a NullPointerException, 
which causes line 8 to be skipped, so C is incorrect. The exception is caught on line 9 
and line 10 prints 4, so option D is correct. Line 11 throws the exception again, which 
causes run() to immediately end, so line 13 doesn’t execute and option E is incorrect. 
The main() method doesn’t catch the exception either, so line 18 doesn’t execute and 
option F is incorrect. The uncaught NullPointerException causes the stack trace to be 
printed, so option G is correct. 



Chapter 6: Exceptions 351

bapp01.indd 1½  4/2014 Page 351

13. A, B, C, E. Classes listed in the throws part of a method declaration must extend 
java.lang.Throwable. This includes Error, Exception, and RuntimeException. Arbi-
trary classes such as String can’t go there. Any Java type, including Exception, can 
be declared as the return type. However, this will simply return the object rather than 
throw an exception.

14. A, C, D, E. A method that declares an exception isn’t required to throw one, making 
option A correct. Runtime exceptions can be thrown in any method, making options 
C and E correct. Option D matches the exception type declared and so is also correct. 
Option B is incorrect because a broader exception is not allowed.

15. A, B, D, E. ArrayIndexOutOfBoundsException, IllegalArgumentException, and Num-
berFormatException are runtime exceptions. Sorry, you have to memorize them. Any 
class that extends RuntimeException is a runtime (unchecked) exception. Classes that 
extend Exception but not RuntimeException are checked exceptions.

16. B. IllegalArgumentException is used when an unexpected parameter is passed into a 
method. Option A is incorrect because returning null or -1 is a common return value 
for this scenario. Option D is incorrect because a for loop is typically used for this 
scenario. Option E is incorrect because you should find out how to code the method 
and not leave it for the unsuspecting programmer who calls your method. Option C is 
incorrect because you should run! 

17. A, C, D, E. The method is allowed to throw no exceptions at all, making option A cor-
rect. It is also allowed to throw runtime exceptions, making options D and E correct. 
Option C is also correct since it matches the signature in the interface.

18. A, B, C, E. Checked exceptions are required to be handled or declared. Runtime 
exceptions are allowed to be handled or declared. Errors are allowed to be handled or 
declared, but this is bad practice.

19. C, E. Option C is allowed because it is a more specific type than RuntimeException. 
Option E is allowed because it isn’t in the same inheritance tree as RuntimeExcep-
tion. It’s not a good idea to catch either of these. Option B is not allowed because the 
method called inside the try block doesn’t declare an IOException to be thrown. The 
compiler realizes that IOException would be an unreachable catch block. Option D 
is not allowed because the same exception can’t be specified in two different catch 
blocks. Finally, option A is not allowed because it’s more general than RuntimeExcep-
tion and would make that block unreachable.

20. A, E.  The code begins normally and prints a on line 13, followed by b on line 15. On 
line 16, it throws an exception that’s caught on line 17. Remember, only the most spe-
cific matching catch is run. Line 18 prints c, and then line 19 throws another excep-
tion. Regardless, the finally block runs, printing e. Since the finally block also 
throws an exception, that’s the one printed.





bapp02.indd 1½  4/2014 Page 353

Study TipsAppendix 

B



bapp02.indd 1½  4/2014 Page 354 bapp02.indd 1½  4/2014 Page 354

This appendix covers suggestions and recommendations for 
how you should prepare for the certifi cation exam. If you’re 
an experienced test taker, or you’ve taken a certifi cation test 

before, most of this should be common knowledge. For those who are taking the exam for 
the fi rst time, don’t panic! We’ll present a number of tips and strategies in this appendix to 
help you prepare for the exam. 

Studying for the Test

Before you even sign up and take the test, you need to study the material. Studying includes 
the following tasks:

 ■ Create a study plan.

 ■ Read the Study Guide material.

 ■ Create and run sample applications.

 ■ Solve the Review Questions at the end of each chapter.

 ■ Create flashcards and/or use the ones we’ve provided.

 ■ Take the three practice exams.

The book is divided into chapters with corresponding exam objectives, to make it easier 
to assimilate. The earlier chapters on syntax and operators are especially important since 
they are used throughout the code samples on the exam. Unless we explicitly stated some-
thing was out of scope for the exam, you will be required to have a strong understanding of 
all the information in this book.

Creating a Study Plan
Rome wasn’t built in a day, so you shouldn’t attempt to study for only one day. Even if you 
have been certifi ed with a previous version of Java, the new test includes features and com-
ponents unique to Java 8 that are covered in this text.

Once you have decided to take the test, which we assume you have already since you’re 
reading this book, you should construct a study plan that fi ts with your schedule. We rec-
ommend you set aside some amount of time each day, even if it’s just a few minutes during 
lunch, to read or practice for the exam. The idea is to keep your momentum going through-
out the exam preparation process. The more consistent you are in how you study, the better 
prepared you will be for the exam. Try to avoid taking a few days or weeks off from study-
ing, or you’re likely to spend a lot of time relearning existing material instead of moving on 
to new material.



Studying for the Test 355

bapp02.indd 1½  4/2014 Page 355

Let’s say you begin studying on January 1. Assuming you allot two weeks per chapter, 
we constructed a study plan in Table B.1 that you can use as a schedule throughout the 
study process. Of course, if you’re new to Java, two weeks per chapter may not be enough; 
if you’re an experienced Java developer, you may only need a few days per chapter.

TA B LE B .1   Sample study plan

Date Task

January 1–January 11 Read Introduction, Appendix B, and Chapter 1

January 12–January 14 Answer Chapter 1 Review Questions

January 15–January 25 Read Chapter 2

January 26–January 28 Answer Chapter 2 Review Questions

January 29–February 8 Read Chapter 3

February 9–February 11 Answer Chapter 3 Review Questions

February 12–February 22 Read Chapter 4

February 23–February 25 Answer Chapter 4 Review Questions

February 26–March 8 Read Chapter 5

March 9–March 11 Answer Chapter 5 Review Questions

March 12–March 22 Read Chapter 6

March 23–March 25 Answer Chapter 6 Review Questions

March 26–April 2 Take practice exams and practice with flashcards

April 3 Take exam

Your own study plan will vary based on your familiarity with Java, your personal and 
work schedule, and your learning abilities. The idea is to create a plan early on that has 
self-imposed deadlines that you can follow throughout the studying process. When some-
one asks how you’re doing preparing for the exam, you should have a strong sense of what 
you’ve learned so far, what you’re currently studying, and how many weeks you need to be 
prepared to the take the exam.

Creating and Running Sample Applications
Although some people can learn Java just by reading a textbook, that’s not how we recom-
mend you study for a certifi cation exam. We want you to be writing your own Java sample 



356 Appendix B ■ Study Tips

bapp02.indd 1½  4/2014 Page 356

applications throughout this book so that you don’t just learn the material but you also 
understand the material. For example, it may not be obvious why the following line of code 
does not compile, but if you try to compile it yourself, the Java compiler will tell you the 
problem.

float value = 102.0; // DOES NOT COMPILE

In this section, we will discuss how to test Java code and the tools available to assist you 
in this process.

A lot of people post on the CodeRanch.com forum asking, “Why does this 
code not compile?” and we encourage you to post the compiler error mes-
sage anytime you need help. We recommend you also read the compiler 
message when posting, since it may provide meaningful information about 
why the code failed to compile.

In the previous example, the compiler failed to compile with the message 
Type mismatch: cannot convert from double to float. This mes-
sage indicates that we are trying to convert a double value, 102.0, to a 
float variable reference using an implicit cast. If we add an explicit cast 
to (float) or change the value to 102.0f, the code will compile without 
issue.

Sample Test Class
Throughout this book, we present numerous code snippets and ask you whether they’ll 
compile and what their output will be. These snippets are designed to be placed inside 
a simple Java application that starts, executes the code, and terminates. As described in 
Chapter 1, “Java Building Blocks,” you can accomplish this by compiling and running a 
public class containing a public static void main(String[] args) method, such as the 
following:

public class TestClass {

  public static void main(String[] args) {

    // Add test code here

    // Add any print statements here

    System.out.println("Hello World!");

  }

}

This application isn’t particularly interesting—it just outputs “Hello World” and exits. 
That said, we can insert many of the code snippets present in this book in the main() 
method to determine if the code compiles, as well as what the code outputs when it does 
compile. We strongly recommend you become familiar with this sample application, so 
much so that you could write it from memory, without the comments.



Studying for the Test 357

bapp02.indd 1½  4/2014 Page 357

We recommend that while reading this book you make note of any sections that you 
do not fully understand and revisit them when in front of a computer screen with a Java 
compiler and Java runtime. You should start by copying the code snippet into your test 
class, and then try experimenting with the code as much as possible. For example, we indi-
cated the previous sample line of code would not compile, but would any of the following 
compile?

float value1 = 102;

float value2 = (int)102.0;

float value3 = 1f * 0.0;

float value4 = 1f * (short)0.0;

float value5 = 1f * (boolean)0;

Try out these samples on your computer and see if the result matches your expectation. 
Here’s a hint: Two of these fi ves lines will not compile.

IDE Software

While studying for the exam, you should develop code using a text editor and command-

line Java compiler. Some of you may have existing experience with Integrated Develop-

ment Environments (IDEs) such as Eclipse or IntelliJ. An IDE is a software application that 

facilitates software development for computer programmers.

Although such tools are extremely valuable in developing software, they can interfere 

with your ability to readily spot problems on the exam. For example, when a line code 

does not compile, the IDE will often underline it in red, whereas on the exam, you’ll have 

to fi nd the line that does not compile, if there is one, on your own.

If you do choose to study with an IDE, make sure you understand everything it is doing in 

the background for you. For the exam, you’ll need to know how to manually compile code 

from the command line, and this experience is rarely learned using an IDE. You’ll also 

need to understand why the code does not compile without relying on the tips and sug-

gestions provided by the IDE.

Identifying Your Weakest Link
The best advice we can give you to do well on the exam is to practice writing sample appli-
cations that push the limits of what you already know, as much and as often as possible. 
For example, if the previous samples with float values were too diffi cult for you, then you 
should spend even more time studying numeric promotion and casting expressions.

Prior to taking the OCA exam, you may already be an experienced Java developer, 
but there is a difference between being able to write Java code and being a certifi ed Java 



358 Appendix B ■ Study Tips

bapp02.indd 1½  4/2014 Page 358

developer. For example, you might go years without writing a ternary expression or using 
an abstract class, but that does not mean they are not important features of the Java lan-
guage. You may also be unaware of some of the more complex features that exist within 
the Java language. On top of that, there are new features to Java 8, such as lambda expres-
sions and default interface methods, which as of this writing very few professional software 
developers are using.

The Review Questions in each chapter are designed to help you hone in on those fea-
tures of the Java language that you may be weak in and that are required knowledge for the 
exam. For each chapter, you should note which questions you got wrong, understand why 
you got them wrong, and study those areas even more.

Often, the reason you got a question wrong on the exam is that you did not fully under-
stand the concept. Many topics in Java have subtle rules that you often need to see for 
yourself to truly understand. For example, you cannot write a class that implements two 
interfaces that defi ne the same default method unless you override the default method in the 
class. Writing and attempting to compile your own sample interfaces and classes that refer-
ence the default method may illuminate this concept far better than we could ever explain it.

Finally, we fi nd developers who practice writing code while studying for the Java certi-
fi cation tend to write better Java code in their professional career. Anyone can write a Java 
class that can compile, but just because a class compiles does not mean it is well designed. 
For example, imagine a class where all class methods and variables were declared public, 
simply because the developer did not understand the other access modifi ers, such as pro-
tected and private. Studying for the certifi cation helps you to learn those features that 
may be applicable in your daily coding experience but that you never knew existed within 
the Java language.

“Overstudying” Practice Exams

Although we recommend reading this book and writing your own sample applications 

multiple times, redoing practice exams over and over can have a negative impact in the 

long run. For example, some individuals study the practice exam questions so much that 

they end up memorizing them. In this scenario, they can easily become overconfi dent—

they can achieve perfect scores on the practice exams but may fail on the actual exam.

If you get a practice exam question correct, you should move on, and if you get it incor-

rect you should review the part of the chapter that covers it until you can answer it cor-

rectly. Remember that for legal reasons the practice exam questions are not real exam 

questions, so it is important you learn the material the questions are based on.

On the other hand, we recommend you repeat Review Questions as often as you like to 

master a chapter. Review Questions are designed to teach you important concepts in the 

chapter, and you should understand them completely before leaving a section. Further-

more, they help improve your ability to recognize certain types of problems present in 

many code snippets.



Taking the Test 359

bapp02.indd 1½  4/2014 Page 359

Taking the Test

Studying how to take a test can be just as important as the studying the material itself. For 
example, you could answer every question correctly, but only make it halfway through the 
exam, resulting in a failing score! If you’re not historically a good test taker, or you’ve never 
taken a certifi cation exam before, we recommend you read this section because it contains 
notes that are relevant to many software certifi cation exams.

Understanding the Question
The majority of questions on the exam will contain code snippets and ask you to answer 
questions about them. For those containing code snippets, the number one question we rec-
ommend you answer before attempting to solve the question is:

Does the code compile?
It sounds simple but many people dive into answering the question without checking 

whether or not the code actually compiles. If you can determine whether or not a particular 
set of code compiles, and what line or lines cause it to not compile, answering the question 
often becomes easy.

Checking the Answers
To determine whether the code will compile, you should briefl y review the answer choices 
to see what options are available. If there are no choices of the form “Code does not com-
pile,” then you can be reasonably assured all the lines of the code will compile and you do 
not need to spend time checking syntax. These questions are often, but not always, among 
the easiest questions because you can skip determining whether the code compiles and 
instead focus on what it does.

If the answer choices do include some answers of the form “Does not compile due to line 
5,” you should immediately focus on those lines and determine whether they compile. For 
example, take a look at the answer choices for the following question: 

18. What is the output of the following code?

- Code Omitted - 

A. Monday

B. Tuesday

C. Friday

D. The code does not compile due to line 4.

E. The code does not compile due to line 6.

The answer choices act as a guide instructing you to focus on line 4 or 6 for compila-
tion errors. If the question indicates only one answer choice is allowed, it also tells you at 
most only one line of code contains a compilation problem and the other line is correct. 
Although the reason line 4 or 6 may not compile could be related to other lines of code, the 



360 Appendix B ■ Study Tips

bapp02.indd 1½  4/2014 Page 360

key is that those other lines do not throw compiler errors themselves. By quickly browsing 
the list of answers, you can save time by focusing only on those lines of code that are pos-
sible candidates for not compiling.

If you are able to identify a line of code that does not compile, you will be able to fi nish 
the question a lot quicker. Often, the most diffi cult questions are the ones where the code 
does in fact compile, but one of the answer choices is “Does not compile” without indicat-
ing any line numbers. In these situations, you will have to spend extra time verifying that 
each and every line compiles. If they are taking too much time, we recommend marking 
these for “Review” and coming back to them later.

Determining What the Question Is Asking
A lot of times, a question may appear to be asking one thing but will actually be asking 
another. For example, the following question may appear to be asking about method over-
loading and abstract classes:

12. What is the output of the following code?
1: abstract class Mammal {

2:   protected boolean hasFur() { return false; }

3: }

4: class Capybara implements Mammal {

5:   public boolean hasFur() { return true; }

6:   public static void main(String[] args) {

7:     System.out.println(new Capybara().hasFur());

8:   }

9: }

It turns out this question is a lot simpler than it looks. A class cannot implement another 
class—it can only extend another class—so line 4 will cause the code to fail to compile. 
If you notice this compiler problem early on, you’ll likely be able to answer this question 
quickly and easily.

Taking Advantage of Context Clues
Let’s face it—there will be things you’re likely to forget on the day of the exam. Between 
being nervous about taking the test and being a bit overtired when you read a particu-
lar chapter, you’re likely to encounter at least one question where you do not have a high 
degree of confi dence. Luckily, you do not need to score a perfect 100% to pass.

One advanced test-taking skill that can come in handy is to use information from one 
question to help answer another. For example, we mentioned in an earlier section that 
you can assume a question’s code block will compile and run if “Does not compile” and 
“Throw an exception at runtime” are not available in the list of answers. If you have a 
piece of code that you know compiles and a related piece of code that you’re not so sure 
about, you can use information from the former question to help solve the latter question.



Taking the Test 361

bapp02.indd 1½  4/2014 Page 361

Use a similar strategy when a question asks which single line will not compile. If you’re 
able to determine the line that does not compile with some degree of confi dence, you 
can use the remaining code that you know does compile as a guide to help answer other 
questions.

By using context clues of other questions on the exam, you may be able to more easily 
solve questions that you are unsure about.

Reviewing Common Compiler Issues
The following is a brief list of common things to look for when trying to determine whether 
code compiles. Bear in mind that this is only a partial list. We recommend you review each 
chapter for a comprehensive list of reasons that code will not compile. Also, if you have not 
fi nished reading the book, you should set aside this list and return to it when you are pre-
paring to take the exam.

Common Tips to Determine if Code Compiles:

 ■ Keep an eye out for all reserved words. [Chapter 1]

 ■ Verify brackets—{}—and parentheses—()—are being used correctly. [Chapter 1]

 ■ Verify new is used appropriately for creating objects. [Chapter 1]

 ■ Ignore all line indentation especially with if-then statements that do not use brackets 
{}. [Chapter 2]

 ■ Make sure operators use compatible data types, such as the logical complement opera-
tor (!) only applied to boolean values, and arithmetic operators (+, -, ++, --) only 
applied to numeric values. [Chapter 2]

 ■ For any numeric operators, check for automatic numeric promotion and order or oper-
ation when evaluating an expression. [Chapter 2]

 ■ Verify switch statements use acceptable data types. [Chapter 2]

 ■ Remember == is not the same as equals(). [Chapter 3]

 ■ String values are immutable. [Chapter 3]

 ■ Non-void methods must return a value that matches or is a subclass of the return type 
of the method. [Chapter 4]

 ■ If two classes are involved, make sure access modifiers allow proper access of variables 
and methods. [Chapter 4]

 ■ Nonstatic methods and variables require an object instance to access. [Chapter 4]

 ■ If a class is missing a default no-argument constructor or the provided constructors do 
not explicitly call super(), assume the compiler will automatically insert them. 
[Chapter 5]

 ■ Make sure abstract methods do not define an implementation, and likewise concrete 
methods always define an implementation. [Chapter 5]



362 Appendix B ■ Study Tips

bapp02.indd 1½  4/2014 Page 362

 ■ You implement an interface and extend a class. [Chapter 5]

 ■ A class can be cast to a reference of any superclass it inherits from or interface it imple-
ments. [Chapter 5]

 ■ Checked exceptions must be caught; unchecked exceptions may be caught but do not 
need to be. [Chapter 6]

 ■ try blocks require a catch and/or finally block for the OCA exam. [Chapter 6]

We have listed the chapter each tip is found in so that you can go back and review any 
that you do not fully understand. Once you’ve determined that the code does in fact com-
pile, proceed with tracing the application logic and trying to determine what the code actu-
ally does.

Applying Process of Elimination
Although you might not immediately know the correct answer to a question, if you can 
reduce the question from fi ve answers down to three, your odds of guessing the correct 
answer will be markedly improved. For example, if you can reduce a question from four 
answers to two answers, you double your chances of guessing the correct answer. In this 
section, we will discuss how to apply the process of elimination to help improve your score.

Using the Provided Writing Material
Depending on your particular testing center, you may be provided with a stack of blank 
paper or a whiteboard to use to help you answer questions. If you sit down and are not pro-
vided with anything, please make sure to ask for such materials.

After determining whether a question compiles and what it is asking for, you should 
then jot down a list of all the answers. You should then proceed to cross out the ones you 
know are not correct. We provided a sample of what this might look like in Figure B.1.

F I GU R E B .1   Eliminating answer choices

If you’re using paper and you decide to come back to this question, be sure to write 
down the question number and save it for later. If you’re using a whiteboard and decide to 
come back to a question later, you may have to redo some of the work, given the limited 
space on a whiteboard. For those questions you want to come back to later, we suggest jot-
ting down the remaining answer choices on the side of the whiteboard. Some test-taking 



Taking the Test 363

bapp02.indd 1½  4/2014 Page 363

software allows you to mark and save which answer choices you’ve eliminated, although in 
our experience this does not always work reliably in practice.

Although you aren’t allowed to bring any written notes with you into the 
exam, you’re allowed to write things down you remember at the start of 
the exam on the provided writing material. If there’s a particular facet of 
the Java language that you have difficulty remembering, try memorizing 
it before the exam and write it down as soon as the exam starts. You can 
then use it as a guide for the rest of the exam. Of course, this strategy only 
works for a handful of topics, since there’s a limit to what you’re likely to 
remember in a short time.

For example, you may have trouble remembering the list of acceptable 
data types in switch statements. If so, we recommend you memorize that 
information before the exam and write it down as soon as the exam starts 
for use in various questions.

Understanding Relationships Between Answers
The exam writers, as well as the writers of this book, are fond of answers that are related 
to each other. We can apply the process of elimination to remove entire sets of answers 
from selection, not just a single answer. For example, take a look at the following question:

22. What is the output of the following application?
3: int x = 0;

4: while(++x < 5) { x+=1; }

5: String message = x > 5 ? "Greater than" : "Less Than";

6: System.out.println(message+","+x);

A. Greater than,5

B. Greater than,6

C. Greater than,7

D. Less than,5

E. Less than,6

F. Less than,7

In this question, notice that half of the answers output Greater than, whereas the other 
half output Less than. Based on the code, as well as the answers available, the question 
cannot output both values. That means if you can determine what the ternary expression 
on line 5 evaluates to, you can eliminate half the answers!

You might also notice that this particular question does not include any “Does not com-
pile” or “Code throws an exception at runtime” answers, meaning you can be assured this 
snippet of code does compile and run without issue. If you have a question similar to this, 
you can compare the syntax and use this as a guide for solving other related questions.



364 Appendix B ■ Study Tips

bapp02.indd 1½  4/2014 Page 364

Guessing the Correct Answer
Unlike with some other standardized tests, there’s no penalty for answering a question 
incorrectly versus leaving it blank. If you’re nearly out of time, or you just can’t decide on 
an answer, select a random answer and move on. If you’ve been able to eliminate even one 
answer, then your guess will be better than blind luck.

Answer All Questions!

You should set a hard stop of 5 minutes of time remaining on the exam to ensure that 

you’ve answered each and every question. Remember, if you fail to answer a question 

you’ll defi nitely get it wrong and lose points, but if you guess, there’s at least a chance 

you’ll be correct. There’s no harm in guessing!

When in doubt, we generally recommend picking a random answer that includes “Does 

not compile” if available, although which choice you select is not nearly as important as 

making sure to not leave any unanswered questions on the exam!

Optimizing Your Time
One of the most diffi cult test-taking skills to master is balancing your time on the exam. 
Although Oracle often varies the precise number of questions on the exam and the amount 
of time you have to answer them, the general rule of thumb is that you have about one and 
half minutes per question.

Of course, it can be stressful to frequently look at the time remaining while taking the 
exam, so the key is pacing yourself. Some questions will take you longer than two minutes 
to solve, but hopefully others will only take less than a minute. The more time you save on 
the easier questions, the more time you’ll have for the harder questions.

Checking the Time Remaining
The exam software includes a clock that tells you the amount of time you have left on 

the exam. We don’t recommend checking the clock after each and every question to deter-
mine your pace. After all, doing such a calculation will waste time and probably make you 
nervous and stressed out. We do recommend you check the time remaining at certain points 
while taking the exam to determine whether you should try to increase your pace.

For example, if the exam lasts two hours and is 90 questions long, the following would 
be a good pace to try to keep.

 ■ 120 Minutes Remaining: Start exam.

 ■ 90 Minutes Remaining: One third of the exam finished.



Taking the Test 365

bapp02.indd 1½  4/2014 Page 365

 ■ 60 Minutes Remaining: Two thirds of the exam finished.

 ■ 30 Minutes Remaining: First pass of all questions complete.

 ■ 5 Minutes Remaining: Finished reviewing all questions marked for “Review.” Select 
answers to all questions left blank.

As you’re taking the exam you may realize you’re falling behind. In this scenario, you 
need to start allotting less time per question, which may involve more guessing, or you’ll 
end up with some questions that you never even answered. As discussed in the previous sec-
tion, guessing an answer to a question is better than not answering the question at all.

Skipping Hard Questions
If you do fi nd you are having diffi culty with a particular set of questions, just skip them. 
The exam provides a feature to mark questions for “Review” that you can later come back 
to. Remember that all questions on the exam, easy or diffi cult, are weighted the same. It is 
a far better use of your time to spend fi ve minutes answering ten easy questions than the 
same amount of time answering one diffi cult question.

You might come to a question that looks diffi cult and immediately realize it is going to 
take a lot of time. In this case, skip it before even starting on it. You can save the most dif-
fi cult problems for the end so that you can get all the easy ones solved early on. Of course, 
you shouldn’t mark every question for “Review,” so use that sparingly. For example, if you 
only need 30 more seconds to solve a specifi c question, it is better to fi nish it so you do not 
have to come back to it later. The trick is to not get stuck on a diffi cult question for a long 
period of time.

Improving Your Test-Taking Speed
Answering certifi cation exam questions quickly does not come naturally to most people. 
It takes a bit of practice and skill to look at a question, a code sample, and 4–6 answers, 
and be able to answer it within a minute or two. The best way to practice is to keep solving 
the review questions at the end of each chapter until you can read, understand, and answer 
them in under a minute.

Once you’ve completed all of the material and practiced with the review questions 
enough that you can answer them quickly and correctly, you should try one of the three 
60-question practice exams that come with this Study Guide. You should treat it like the 
real exam, setting aside two hours and fi nishing it in one sitting.

Although we recommend you try to avoid taking the practice exams so much that you 
memorize the questions and answers, we do recommend you keep taking them until you 
can fi nish each practice exam in under two hours. Remember not to move on to the next 
one until you can pass the previous exam in the allotted time. If not, study more and go 
back to drilling on the Review Questions. The idea is that you want to be good at quickly 
reading through the question, honing in on the key concept the question is asking, and 
being able to select the answer that best represents it.



366 Appendix B ■ Study Tips

bapp02.indd 1½  4/2014 Page 366

Getting a Good Night’s Rest
Although a lot of people are inclined to cram as much material as they can in the hours 
leading up to the exam, most studies have shown that this is a poor test-taking strategy. 
The best thing we can recommend you do before the exam is to get a good night’s rest!

Given the length of the exam and number of questions, the exam can be quite draining, 
especially if this is your fi rst time taking a certifi cation exam. You might come in expect-
ing to be done 30 minutes early, only to discover you are only a quarter of the way through 
the exam with half the time remaining. At some point, you may begin to panic, and it is 
in these moments that these test-taking skills are most important. Just remember to take 
a deep breath, stay calm, eliminate as many wrong answers as you can, and make sure to 
answer each and every question. It is for stressful moments like these that being well rested 
with a good night’s sleep will be most benefi cial!



bindex.indd 1½  4/2014 Page 367

 Index





bindex.indd 1½  4/2014 Page 369

Note to the Reader: Throughout this index boldfaced page numbers indicate primary discus-
sions of a topic. Italicized page numbers indicate illustrations.

A
abstract classes

concrete classes from, 262–263
creating, 259
defining, 260–262
extending, 263–265

abstract specifiers
interfaces, 267–269
methods, 168, 271–273

access modifiers, 173
default, 175
description, 7
inheritance, 237
methods, 166–167
private, 173, 174
protected, 176, 176
public, 180–181
static, 181–188

add() method, 130–131
addition

dates, 142–143
precedence, 53–54

ampersands (&) for logical operators, 64, 64
ancestors in inheritance, 234
“and” logical operator, 64, 64
anonymous arrays, 120
append() method, 115
args parameters in main(), 7–8
arithmetic operators, 53–55
ArithmeticException class, 314
ArrayIndexOutOfBoundsException class, 123, 

314–315
ArrayLists, 129

arrays from, 136–137
autoboxing, 136
creating, 129
methods, 130–134
sorting, 138
wrapper classes, 134–135

arrays, 119
ArrayLists, 129
declaring, 121
indexes, 7, 120, 120

multidimensional, 126–129, 127–128
parameters, 7
primitives, 119–121, 119–120
reference variables, 121, 122
searching, 125–126
sorting, 124–125
varargs, 126
working with, 123–124

arrow operator (->) for lambda expressions, 
211–212, 212

asList() method, 187–188
assignment operators

compound, 62–63
overview, 60
precedence, 53

assumed keywords in interfaces, 268
asterisks (*)

comments, 4–5
packages, 10

asymmetric arrays, 128, 128
autoboxing

overloading methods, 193
type conversions, 136

B
B prefix for binary, 22
backed lists, 137
base 10 numbering system, 

22
Beginning Java forum, 6
binary number format, 22–23
binary operators

arithmetic, 53–55
assignment, 60
casting, 60–61
compound assignment operators, 62–63
equality, 65–66
logical, 64–65, 64
numeric promotion, 55–57
relational, 63

binary searches, 125–126
bitwise operators, 64, 64



bindex.indd 1½  4/2014 Page 370

370 blocks – commas (,)

blocks
description, 67
initialization order, 19–20
instance initializer, 18
scope in, 31–34

bodies
lambda expressions, 212, 

212
methods, 171–172

boolean type
default initialization, 31
if statements, 70
logical operators, 57–58
size and range, 21
ternary operators, 71–72
while statements, 77
wrapper classes, 134–135

braces ({})
blocks, 18–19, 32–33
if-then statements, 68
lambda expressions, 212, 

212
methods, 171
try statements, 306–307

brackets ([]) for arrays, 7, 119–122
break statements

in loops, 88–90, 88
in switch, 74

byte type
default initialization, 31
promotion rules, 56
size and range, 21
switch statements, 72–73
wrapper classes, 134–135

bytecode, 6

C
calling

constructors, 243–244
inherited class members, 244–245
static variables and methods, 182–183

CamelCase names, 28–29
capacity vs. size, 113–114, 114
carets (^) for logical operators, 64, 64
case sensitivity of names, 27
case statements in switch, 73–76, 73
casting

objects, 282–284
operators, 60–61

catch blocks, 305–309, 305
chaining

constructors, 201
methods, 110–111
StringBuilder, 112–113

char type
default initialization, 31
promotion rules, 56
size and range, 21
switch statements, 72–73
wrapper classes, 134–135

charAt() method, 106, 114, 135
checked exceptions, 303, 305, 317
child classes in inheritance, 234
child packages, 10
.class extension, 6
class variables in default initialization, 30–31
ClassCastException class, 

315
classes

abstract, 259–265
concrete, 262–263
description, 2
element ordering, 34–35
extending, 235–236, 235
fields and methods, 2–4
vs. files, 5
immutable, 207–208
inheritance. See inheritance
interfaces. See interfaces
packages, 9
paths, 15
subclasses, 319–321
wrapper, 134–136

clear() method, 133
closures. See lambda expressions
code

blocks, 18–19
compiling, 6, 14–15
exam formatting, 16

colons (:)
dates and times, 150
labels, 88
paths, 15
ternary operators, 71

commas (,)
dates and times, 150
exception lists, 171
interface implementation, 267
parameter lists, 171
variable declarations, 26



comments – do-while statements 371

bindex.indd 1½  4/2014 Page 371

comments, 4
comparators in arrays, 125
compile-time constant values in switch 

statements, 73–76
compiling code

extensions for, 6
and inheritance, 241–242
with packages, 14–15

compound assignment operators, 62–63
concatenating strings, 102–104
concrete classes, 262–263
conflicts in names, 12–13
consistency of names, 28
constant values in switch statements, 73–76
constructors

calling, 243–244
chaining, 201
creating, 196
date and time, 141
default, 197–199
defining, 238
definition rules, 242–243
final fields, 202
initialization order, 202–204
objects, 17
overloading, 199–200
wrapper classes, 134–135

contains() method
ArrayLists, 133
strings, 109–110

continue statements, 90–91, 90
control flow statements

break, 88–90, 88
continue, 90–91, 90
do-while, 78–80, 78
for, 80–83, 80, 85
for-each, 83–86, 83
if-then, 67–68, 67
if-then-else, 68–70, 69
labels, 87–89
nested loops, 87
switch, 72–76, 73
while, 76–77, 77, 79

converting
ArrayLists to arrays, 136–137
number systems, 23
objects to wrapper classes, 135–136

covariant return types, 248, 252
curly braces ({})

blocks, 18–19, 32–33
if-then statements, 68

lambda expressions, 212, 212
methods, 171
try statements, 306–307

D
data types

in for statements, 82
promotion rules, 55–57
switch statements, 72–73

Date class, 12–13
dates

creating, 138–142
earlier versions, 141–142, 144, 150
formatting, 148–150
manipulating, 142–145
parsing, 151
periods, 145–147

DateTimeFormatter class, 148–150
dd format for dates and times, 

150
decimal numbering system, 22
declare rules for exceptions, 303
declaring

arrays, 121
methods, 166, 166
variables, 25

decrement operators, 58
default statements in switch, 72, 74
defaults

access modifiers, 167, 175
constructors, 17, 197–199
interface methods, 274–278
packages, 13
variable initialization, 29

defining
abstract classes, 260–262
interfaces, 267–269

delete() method, 116
deleteCharAt() method, 116
descedents in inheritance, 234
destroying objects

finalize(), 38–39
garbage collection, 36, 37–38

diamond operator (<>), 130
division

modulus operation, 54–55
precedence, 53–54

do-while statements, 78–80, 78



372 dollar signs ($) for names – free store

bindex.indd 1½  4/2014 Page 372

dollar signs ($) for names, 27, 29
double quotes (")

for spaces, 8
strings, 102–103

double type
default initialization, 31
size and range, 21
wrapper classes, 134–135

E
else operators, 68–70, 69
encapsulation

description, 39
immutable classes, 207–208
overview, 205–206

endsWith() method, 109
enum type

dates, 140
support for, 72–73
switch statements, 72

equal signs (=)
assignment operators, 60
compound assignment operators, 62–63
equality, 117–118
equality operators, 65–66
precedence, 53
relational operators, 63
unary operator, 57
variable declarations, 25

equality
operators, 65–66
overview, 117–119

equals() method
ArrayLists, 133–134
arrays, 121
strings, 109, 118–119

equalsIgnoreCase() method, 109
Error class, 302, 302, 305, 317–318
exams, code formatting in, 16
exception lists for methods, 171
ExceptionInInitializerError class, 317
exceptions

checked, 317
Error, 317–318
finally blocks, 307–309, 307
ignoring, 322
methods, 318–322
multiple, 311–313
printing, 321, 322

reasons, 300
vs. return codes, 301–302
roles, 300–301
runtime, 314–316
subclasses, 319–321
throwing, 304–305
try statements, 305–307, 305
types, 302–303, 302, 309

exclamation points (!)
equality operators, 65–66
logical operator, 57–58
unary operator, 57

“exclusive or” operator, 64, 64
exit() method, 309
extending

abstract classes, 263–265
classes, 235–236, 235
interfaces, 269

F
false value in logical operators, 57
fields

in classes, 35, 41
final, 202
initialization order, 19–20
overview, 2–4
reading and writing, 18
static, 181–182

FileNotFoundException class, 317
files vs. classes, 5
final specifiers

abstract classes, 261
constants, 74
constructor fields, 202
interfaces, 267, 273–274
methods, 168, 256

finalize() method, 38
finally blocks, 307–309, 307
float type

default initialization, 31
promotion rules, 55
size and range, 21
wrapper classes, 134–135

for statements, 80–83, 80, 85
for-each statements, 83–86, 

83
format() method, 148
formatting dates and times, 148–150
free store, 36



functional interfaces with lambda expressions – interfaces 373

bindex.indd 1½  4/2014 Page 373

functional interfaces with lambda expressions, 
214

functional programming, 208–209
functions. See methods

G
garbage collection, 36, 37–38
gc() method, 36
generics, 130
getter methods in JavaBeans, 206
getting variables, 18
GMT (Greenwich Mean Time), 146
greater than signs (>)

diamond operator, 130
lambda expressions, 211–212, 212
relational operators, 63

Greenwich Mean Time (GMT), 146

H
handle rules for exceptions, 

303
heap, 36
hexadecimal number format, 22–23
hh format for dates and times, 150
hiding

vs. overriding, 254–255
static methods, 252–254
variables, 257

I
identifiers, 27
if-then statements, 67–68, 67
if-then-else statements, 68–70, 

69
ignored returned values, 191
IllegalArgumentException class, 315–316
immutability of strings, 104–105
immutable classes, creating, 207–208
imports

element ordering, 35
packages, 9, 11–12
static, 187–188

“inclusive or” operator, 64, 64
increment operators, 58
indentation in if-then statements, 

68

indexes
arrays, 7, 120, 120
strings, 105–107, 106

indexOf() method, 106–107, 114
infinite loops, 78
infinite recursion, 317
inheritance

access modifiers, 237
calling class members, 244–245
compiler enhancements, 241–242
constructors, 238, 242–244
extending classes, 235–236, 235
interfaces, 269–273, 277
methods, 246
object creation, 237–238, 238
overview, 234, 235
variables, 257

initialization
constructor order, 202–204
default variables, 29
object order, 19–20
static, 186–187
variables, 25–26

initialization blocks in for statements, 80–82, 
80

initializer blocks, instances in, 18–19
insert() method, 115
instance members vs. static, 183–185
instance variables

default initialization, 30–31
scope, 33

instanceof operator, 63, 283
instances

creating, 17
initialization order, 19
initializer blocks, 18–19
objects, 2

instantiation process, 196
int type

default initialization, 31
promotion rules, 55
size and range, 21–22
switch statements, 72–73
wrapper classes, 134–135

integrated development environment (IDE), 14
interfaces

abstract methods, 271–273
with classes, 270
default methods, 274–278
defining, 267–269
extending, 269
implementing, 266, 266
inheriting, 269–273



374 intValue() method – methods

bindex.indd 1½  4/2014 Page 374

lambda expressions, 214
multiple inheritance, 277
static methods, 278
variables, 273–274

intValue() method, 135
IOException class, 317
isEmpty() method, 132–133

J
JAR files, 15
Java Development Kit (JDK), 6
.java extension, 6
java.lang package, 11
Java Runtime Environment (JRE), 6
Java Virtual Machine (JVM), 6
JavaBeans names, 205–206
javac command, 15
Javadoc comments

description, 4
key benefits, 39–40

JDK (Java Development Kit), 6
JRE (Java Runtime Environment), 6
JVM (Java Virtual Machine), 6

K
keywords, 3

L
L suffix for long, 22
labels, 87–89
lambda expressions

example, 209–211
predicates, 214–215
syntax, 211–213, 212
variable access, 213
writing, 208–209

length() method, 106, 114
less than signs (<)

diamond operator, 130
relational operators, 

63
lists. See ArrayLists
literal values

primitive types, 22–23
strings, 105, 117–118

switch statements, 73–75
local variables, 29
LocalDate, 138–141, 146
LocalDateTime, 139–141, 146
LocalTime, 139–140
logical operators, 64

complement, 57
overview, 64–65
precedence, 53

long type
dates and times, 146
default initialization, 31
size and range, 21–22
wrapper classes, 134–135

loops
arrays, 123
break statements, 88–90, 88
continue statements, 90–91, 90
do-while, 78–80, 78
for, 80, 85
for-each, 83–86, 83
infinite, 78
labels, 87–88
nested, 87
while, 76–77, 77, 79

M
main() method, 6
MAX_VALUE constant, 22
MEDIUM format for dates and times, 149
members in classes, 2
memory

object destruction, 36, 37–38
reference types, 24, 24

methods
abstract, 259, 271–273
access modifiers. See access modifiers
ArrayLists, 130–134
bodies, 171–172
chaining, 110–111
constructors. See constructors
dates and times, 144
declaring, 166, 166
defining, 3
designing, 166, 166
exception lists, 171
exceptions thrown by, 318–322
final, 256
hiding, 252–254
interfaces, 271–279



minus signs (-) – order 375

bindex.indd 1½  4/2014 Page 375

main(), 6
names, 170
optional specifiers, 168–169
overloading, 191
overriding, 246, 319–321
overriding vs. hiding, 254–255
overview, 2–4
parameter lists, 171
passing data, 188–191, 190
polymorphism, 287–288
redeclaring, 251–252
return types, 169–170
signatures, 3, 7, 166, 166
static, 181–182
StringBuilder class, 114–117
strings, 105–109
varargs, 172–173
virtual, 284–285

minus signs (-)
compound assignment operators, 62
increment operators, 58–59
lambda expressions, 211–212, 212
negation operator, 57–58
unary operator, 57

mm format for dates and times, 150
MMMM format for dates and times, 150
modulus operator (%)

overview, 54–55
precedence, 53–54

multidimensional arrays, 126–129, 127–128
multiple exceptions, 311–313
multiple inheritance

description, 234–235, 235
interfaces, 271–273, 277

multiple-line comments, 4–5
multiple variables, declaring, 26
multiplication, 53–54
mutability of StringBuilder, 112–113

N
names

conflicts, 12–13
constructors, 17
identifiers, 27
JavaBeans, 205–206
methods, 170
packages, 10, 12–13

native specifiers, 168
negation operator, 57
nested loops, 87

new keyword for constructors, 17
no-argument constructors, 198
NoClassDefFoundError class, 318
not equals operators, 65–66
now() method, 139
null values

autoboxing, 136
reference types, 24

NullPointerException class, 303, 316
NumberFormatException class, 316
numbering systems, 22–23
numeric promotion, 55–57

O
object-oriented languages, 

39
objects

casting, 282–284
comparing, 66
constructors, 17
creating, 16, 237–238, 238
description, 2
destroying, 36–39, 37–38
initialization order, 19–20
instance initializer blocks, 18–19
polymorphism, 281–282, 282
primitive types, 20–23
reading and writing fields, 18
vs. references, 36, 37

octal number format, 22
ofLocalized methods, 149
operators

arithmetic, 53–55
assignment, 60, 62
casting, 60–61
equality, 65–66
logical, 64–65, 64
numeric promotion, 55–57
order, 52
overview, 52
relational, 63
ternary, 71
unary, 57–59

optional specifiers, 168–169
“or” operator, 64, 64
order

class elements, 34–35
constructor initialization, 202–204
field initialization, 19–20
operators, 52



376 overflow – public access modifiers

bindex.indd 1½  4/2014 Page 376

overflow, 61
overloading methods, 191

autoboxing, 193
constructors, 199–200
vs. overriding, 248
overview, 194–196
primitive types, 194
reference types, 193–194
varargs, 192–193

overriding
vs. hiding, 254–255
methods, 246, 319–321
vs. overloading, 248
polymorphism, 287–288

P
package private access modifiers, 167, 175
packages

compiling code with, 14–15
creating, 13–14
element ordering, 35
names, 10, 12–13
overview, 9
redundant imports, 11–12
wildcards, 10–11

parameters
main(), 7
methods, 3, 171
overloading methods, 192–193, 199
polymorphic, 285–286

parent classes in inheritance, 234
parentheses ()

lambda expressions, 212–213, 212
methods, 167
precedence, 54

parse() method, 151
parseInt() method, 135
parsing dates and times, 151
pass-by-reference languages, 190–191
pass-by-value languages, 188–190, 190
passing data in methods, 188–191, 190
paths for classes, 15
percent signs (%) for modulus, 54
Period class, 146–147
periods in dates and times, 145–147
platform independence, 39–40

plus methods for dates, 144
plus signs (+)

compound assignment operators, 62
increment operators, 58–59
string concatenation, 103
unary operator, 57

pointers, 24
polymorphism

casting objects, 282–284
method overriding, 287–288
objects vs. references, 281–282, 282
overview, 279
parameters, 285–286
virtual methods, 284–285

pools, strings, 105
post-decrement operators, 58–59
post-increment operators, 58–59
pre-decrement operators, 58–59
pre-increment operators, 58–59
precedence of operators, 52
predicates in lambda expressions, 214–215
primitive types

arrays, 119–121, 119–120
casting, 60–61
overloading methods, 194
overview, 20–23
vs. reference, 25

printing exceptions, 321, 322
private access modifiers

abstract classes, 261
inheritance, 237
interfaces, 267–269
methods, 167
overview, 173, 174

private methods, redeclaring, 251–252
procedural languages, 39
procedures. See methods
promotion, numeric, 55–57
properties in JavaBeans, 205
protected access modifiers

interfaces, 267–269
methods, 167
overview, 176, 176

public access modifiers
inheritance, 237
interfaces, 267–268, 273–274
methods, 167
overview, 7, 180–181



question marks (?) for ternary operators – sorting 377

bindex.indd 1½  4/2014 Page 377

Q
question marks (?) for ternary operators, 

71
quotes (")

for spaces, 8
strings, 102–103

R
ranges of primitive types, 21
readability

if-then statements, 68
literal values, 23
names, 28
polymorphic parameters, 286

reading fields, 18
recursion, infinite, 317
recursive functions, 247
redeclaring private methods, 251–252
redundant package imports, 11–12
references

in arrays, 121, 122
comparing, 66
methods, 189–191, 190
vs. objects, 36, 37
overloading methods, 194
overview, 24, 24
polymorphism, 281–282, 282
vs. primitive, 25

relational operators
overview, 63
precedence, 53

remainder operator (%)
overview, 54–55
precedence, 53–54

remove() method, 131–132
replace() method, 110
reserved words, 27
return codes vs. exceptions, 301–302
return statement in methods, 169
return types and values

constructors, 17
covariant, 248, 252
description, 7
ignored, 191
immutable classes, 207–208

methods, 169–170
reverse() method, 116
robustness, 40
runtime exceptions, 314–316
RuntimeException class, 302–303, 302, 305

S
scope

in for statements, 81
variables, 31–34

searching arrays, 125–126
security, 40
semicolons (;)

class paths, 15
in for statements, 81
lambda expressions, 212–213, 212
variable declarations, 27

set() method, 132
setter methods in JavaBeans, 206
setting variables, 18
shift operators, 53
short-circuit logical operators

description, 64–65
precedence, 53

SHORT format for dates and times, 149
short type

default initialization, 31
promotion rules, 56
size and range, 21
switch statements, 72–73
wrapper classes, 134–135

signatures in methods, 3, 7, 166, 
166

simplicity, 40
single inheritance, 234, 235
single-line comments, 4
size

vs. capacity, 113–114, 114
primitive types, 21

size() method, 132–133
slashes (/)

comments, 4–5
division, 53
precedence, 54

sorting
ArrayLists, 138



378 spaces in arguments – update statements in for statements

bindex.indd 1½  4/2014 Page 378

arrays, 124–125
spaces in arguments, 8
square brackets ([]) for arrays, 7, 

119–122
StackOverflowError class, 318
startsWith() method, 109
statements

do-while, 78–80, 78
for, 80–83, 80, 85
for-each, 83–86, 83
if-then, 67–68, 67
if-then-else, 68–70, 69
overview, 66
switch, 72–76, 73
while, 76–77, 77, 79

static keyword, 7
static methods, hiding, 252–254
static specifiers

calling variables and methods, 182–183
designing, 181–182
imports, 187–188
initialization, 186–187
vs. instance, 183–185
interfaces, 273–274, 278
methods, 168
variables, 185

strictfp specifiers, 168
String class, 102
StringBuffer class vs, 117
StringBuilder class, 111–112

creating, 113–114
methods, 114–117
mutability and chaining, 112–113
vs. StringBuffer class, 117

strings
as arrays, 119
concatenating, 102–104
description, 3, 102
immutability, 104–105
methods, 105–109
pools, 105
StringBuilder class, 111–117
switch statements, 73

subclasses with exceptions, 319–321
substring() method, 107–108, 114
subtraction

days, 145
precedence, 53–54

super() keyword, 239–243, 246
super keyword, 246–247

switch statements, 72
compile-time constant values, 73–76
data types, 72–73, 73

synchronized specifiers, 168
System.gc() method, 36

T
ternary operators

overview, 71
precedence, 53

this() keyword, 238
Throwable class, 302, 302
throwing exceptions, 304–305
times

creating, 138–142
formatting, 148–150
manipulating, 142–145
parsing, 151
periods, 145–147

toEpochDay() method, 146
toEpochTime() method, 146
toLowerCase() method, 108
toString() method, 105, 116–117
toUpperCase() method, 108
trim() method, 110
true value in logical operators, 57
truth tables, 64, 64
try statements, 305–307, 305
two-multidimensional arrays, 127

U
unary operators

increment and decrement, 58–59
logical complement and negation, 57–58
precedence, 53
promotion rules, 56
working with, 57

unchecked exceptions, 302
underflow, 61
underscores (_)

in literal values, 23
names, 27

Unicode character set, 29
update statements in for statements, 80–82, 

80



valueOf() method – ZonedDateTime 379

bindex.indd 1½  4/2014 Page 379

V
valueOf() method, 135
variable argument (varargs) lists, 7–8

ArrayLists, 137
arrays, 126
methods, 172–173
overloading methods, 192–193

variables
assignment operators, 60, 62–63
declaring, 25
default initialization, 29
defining, 3
description, 2
in for statements, 81–83
for-each statements, 83
hiding, 257
inheriting, 257
interfaces, 273–274
lambda expression access, 213
reading and writing, 18
scope, 31–34
static, 185

vertical bars (|) for logical operators, 64, 64
virtual methods, 284–285
void type, 7

description, 3
methods, 169

W
while statements, 76–77, 77, 

79
wildcards

JAR files, 15
packages, 10–11

wrapper classes
ArrayLists, 134–135
converting to, 135–136
switch statements, 73

“write once, run everywhere”, 
40

writing fields, 18

X
X for hexadecimal, 22

Z
ZonedDateTime, 139



















badvert.indd 1½  4/2014 Page 388

Register on Sybex.com to gain access to the free online interactive 
learning environment and test bank to help you study for your OCA Java 
SE 8 Programmer I certifi cation.

The online test bank includes:

• Assessment Test to help you focus your study to specifi c objectives
• Chapter Tests to reinforce what you learned
• Practice Exams to test your knowledge of the material
• Electronic Flashcards to reinforce your learning and provide last-minute 

test prep before the exam 
• Searchable Glossary gives you instant access to the key terms you’ll need 

to know for the exam

Go to www.sybex.com/go/ocajavase8 to register and gain access to this 
comprehensive study tool package.

Free Online 
Learning 
Environment



WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.


	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction
	The OCA Exam
	Scheduling the Exam
	The Day of the Exam
	Finding Out Your Score
	Exam Questions
	Getting Started
	Getting Help
	Who Should Buy This Book
	How This Book Is Organized
	Free Online Learning Environment
	Conventions Used in This Book
	OCA Exam Objectives

	Assessment Test
	Answers to Assessment Test
	Chapter 1 Java Building Blocks�������������������������������������
	Understanding the Java Class Structure���������������������������������������������
	Fields and Methods�������������������������
	Comments���������������
	Classes vs. Files������������������������

	Writing a main() Method������������������������������
	Understanding Package Declarations and Imports�����������������������������������������������������
	Wildcards����������������
	Redundant Imports������������������������
	Naming Conflicts�����������������������
	Creating a New Package�����������������������������
	Code Formatting on the Exam����������������������������������

	Creating Objects�����������������������
	Constructors�������������������
	Reading and Writing Object Fields����������������������������������������
	Instance Initializer Blocks����������������������������������
	Order of Initialization������������������������������

	Distinguishing Between Object References and Primitives��������������������������������������������������������������
	Primitive Types����������������������
	Reference Types����������������������
	Key Differences����������������������

	Declaring and Initializing Variables�������������������������������������������
	Declaring Multiple Variables�����������������������������������
	Identifiers������������������

	Understanding Default Initialization of Variables��������������������������������������������������������
	Local Variables����������������������
	Instance and Class Variables�����������������������������������

	Understanding Variable Scope�����������������������������������
	Ordering Elements in a Class�����������������������������������
	Destroying Objects�������������������������
	Garbage Collection�������������������������
	finalize()�����������������

	Benefits of Java�����������������������
	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 2 Operators and Statements�����������������������������������������
	Understanding Java Operators�����������������������������������
	Working with Binary Arithmetic Operators�����������������������������������������������
	Arithmetic Operators���������������������������
	Numeric Promotion������������������������

	Working with Unary Operators�����������������������������������
	Logical Complement and Negation Operators������������������������������������������������
	Increment and Decrement Operators����������������������������������������

	Using Additional Binary Operators����������������������������������������
	Assignment Operators���������������������������
	Compound Assignment Operators������������������������������������
	Relational Operators���������������������������
	Logical Operators������������������������
	Equality Operators�������������������������

	Understanding Java Statements������������������������������������
	The if-then Statement����������������������������
	The if-then-else Statement���������������������������������
	The switch Statement���������������������������
	The while Statement��������������������������
	The do-while Statement�����������������������������
	The for Statement������������������������

	Understanding Advanced Flow Control������������������������������������������
	Nested Loops�������������������
	Adding Optional Labels�����������������������������
	The break Statement��������������������������
	The continue Statement�����������������������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 3 Core Java APIs�������������������������������
	Creating and Manipulating Strings����������������������������������������
	Concatenation��������������������
	Immutability�������������������
	The String Pool����������������������
	Important String Methods�������������������������������
	Method Chaining����������������������

	Using the StringBuilder Class������������������������������������
	Mutability and Chaining������������������������������
	Creating a StringBuilder�������������������������������
	Important StringBuilder Methods��������������������������������������
	StringBuilder vs. StringBuffer�������������������������������������

	Understanding Equality�����������������������������
	Understanding Java Arrays��������������������������������
	Creating an Array of Primitives��������������������������������������
	Creating an Array with Reference Variables�������������������������������������������������
	Using an Array���������������������
	Sorting��������������
	Searching����������������
	Varargs��������������
	Multidimensional Arrays������������������������������

	Understanding an ArrayList���������������������������������
	Creating an ArrayList����������������������������
	Using an ArrayList�������������������������
	Wrapper Classes����������������������
	Autoboxing�����������������
	Converting Between array and List����������������������������������������
	Sorting��������������

	Working with Dates and Times�����������������������������������
	Creating Dates and Times�������������������������������
	Manipulating Dates and Times�����������������������������������
	Working with Periods���������������������������
	Formatting Dates and Times���������������������������������
	Parsing Dates and Times������������������������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 4 Methods and Encapsulation������������������������������������������
	Designing Methods������������������������
	Optional Specifiers��������������������������
	Return Type������������������
	Method Name������������������
	Parameter List���������������������
	Optional Exception List������������������������������
	Method Body������������������

	Working with Varargs���������������������������
	Applying Access Modifiers��������������������������������
	Private Access���������������������
	Default (Package Private) Access���������������������������������������
	Protected Access�����������������������
	Public Access��������������������
	Designing Static Methods and Fields������������������������������������������
	Calling a Static Variable or Method������������������������������������������
	Static vs. Instance��������������������������
	Static Variables�����������������������
	Static Initialization����������������������������
	Static Imports���������������������

	Passing Data Among Methods���������������������������������
	Overloading Methods��������������������������
	Creating Constructors����������������������������
	Default Constructor��������������������������
	Overloading Constructors�������������������������������
	Final Fields�������������������
	Order of Initialization������������������������������

	Encapsulating Data�������������������������
	Creating Immutable Classes���������������������������������

	Writing Simple Lambdas�����������������������������
	Lambda Example���������������������
	Lambda Syntax��������������������
	Predicates�����������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 5 Class Design�����������������������������
	Introducing Class Inheritance������������������������������������
	Extending a Class������������������������
	Applying Class Access Modifiers��������������������������������������
	Creating Java Objects����������������������������
	Defining Constructors����������������������������
	Calling Inherited Class Members��������������������������������������
	Inheriting Methods�������������������������
	Inheriting Variables���������������������������

	Creating Abstract Classes��������������������������������
	Defining an Abstract Class���������������������������������
	Creating a Concrete Class��������������������������������
	Extending an Abstract Class����������������������������������

	Implementing Interfaces������������������������������
	Defining an Interface����������������������������
	Inheriting an Interface������������������������������
	Interface Variables��������������������������
	Default Interface Methods��������������������������������
	Static Interface Methods�������������������������������

	Understanding Polymorphism���������������������������������
	Object vs. Reference���������������������������
	Casting Objects����������������������
	Virtual Methods����������������������
	Polymorphic Parameters�����������������������������
	Polymorphism and Method Overriding�����������������������������������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Chapter 6 Exceptions���������������������������
	Understanding Exceptions�������������������������������
	The Role of Exceptions�����������������������������
	Understanding Exception Types������������������������������������
	Throwing an Exception����������������������������

	Using a try Statement����������������������������
	Adding a finally Block�����������������������������
	Catching Various Types of Exceptions�������������������������������������������
	Throwing a Second Exception����������������������������������

	Recognizing Common Exception Types�����������������������������������������
	Runtime Exceptions�������������������������
	Checked Exceptions�������������������������
	Errors�������������

	Calling Methods That Throw Exceptions��������������������������������������������
	Subclasses�����������������
	Printing an Exception����������������������������

	Summary��������������
	Exam Essentials����������������������
	Review Questions�����������������������

	Appendix A Answers to Review Questions���������������������������������������������
	Chapter 1: Java Building Blocks��������������������������������������
	Chapter 2: Operators and Statements������������������������������������������
	Chapter 3: Core Java APIs��������������������������������
	Chapter 4: Methods and Encapsulation�������������������������������������������
	Chapter 5: Class Design������������������������������
	Chapter 6: Exceptions����������������������������

	Appendix B Study Tips����������������������������
	Studying for the Test����������������������������
	Creating a Study Plan����������������������������
	Creating and Running Sample Applications�����������������������������������������������

	Taking the Test����������������������
	Understanding the Question���������������������������������
	Applying Process of Elimination��������������������������������������
	Optimizing Your Time���������������������������
	Getting a Good Night’s Rest����������������������������������


	Index
	Free Online Learning Environment
	EULA



